Advertisements
Advertisements
Question
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
Solution
\[Given: \hspace{0.167em} A = \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix}\]
\[ A^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix}\]
\[B = \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \]
\[ B^T = \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]
\[\left( i \right) \]
\[ \left( 2A \right)^T = 2 A^T \]
\[ \Rightarrow \left( 2\begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix} \right)^T = 2\begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}4 & - 6 \\ - 14 & 10\end{bmatrix}^T = \begin{bmatrix}4 & - 14 \\ - 6 & 10\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}4 & - 14 \\ - 6 & 10\end{bmatrix} = \begin{bmatrix}4 & - 14 \\ - 6 & 10\end{bmatrix} \]
\[ \therefore LHS = RHS\]
APPEARS IN
RELATED QUESTIONS
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Show that AB ≠ BA in each of the following cases:
`A=[[1 3 0],[1 1 0],[4 1 0]]`And B=`[[0 1 0],[1 0 0],[0 5 1]]`
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], then prove that A2 − A + 2I = O.
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.
If A=then find λ, μ so that A2 = λA + μI
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
If `A=[[0,0],[4,0]]` find `A^16`
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
For any square matrix write whether AAT is symmetric or skew-symmetric.
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total money (in Rupees) collected by the school DPS?
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- How many articles (in total) are sold by three schools?