English

If `A=[[-2],[4],[5]]` , B = [1 3 −6], Verify that (Ab)T = Bt at - Mathematics

Advertisements
Advertisements

Question

If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT

 
Sum

Solution

\[Given: A = \begin{bmatrix}- 2 \\ 4 \\ 5\end{bmatrix}\] 

\[ A^T = \begin{bmatrix}- 2 & 4 & 5\end{bmatrix}\] 

\[B = \begin{bmatrix}1 & 3 & - 6\end{bmatrix} \] 

\[ B^T = \begin{bmatrix}1 \\ 3 \\ - 6\end{bmatrix}\] 

\[Now, \] 

\[AB = \begin{bmatrix}- 2 \\ 4 \\ 5\end{bmatrix} \begin{bmatrix}1 & 3 & - 6\end{bmatrix} \] 

\[ \Rightarrow AB = \begin{bmatrix}- 2 & - 6 & 12 \\ 4 & 12 & - 24 \\ 5 & 15 & - 30\end{bmatrix}\] 

\[ \Rightarrow \left( AB \right)^T = \begin{bmatrix}- 2 & 4 & 5 \\ - 6 & 12 & 15 \\ 12 & - 24 & - 30\end{bmatrix} . . . \left( 1 \right)\] 

\[ B^T A^T = \begin{bmatrix}1 \\ 3 \\ - 6\end{bmatrix}\begin{bmatrix}- 2 & 4 & 5\end{bmatrix}\] 

\[ \Rightarrow B^T A^T = \begin{bmatrix}- 2 & 4 & 5 \\ - 6 & 12 & 15 \\ 12 & - 24 & - 30\end{bmatrix} . . . \left( 2 \right)\] 

\[ \therefore \left( AB \right)^T = B^T A^T \left[ \text{From eqs} . (1) and (2) \right]\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.4 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.4 | Q 4 | Page 54

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the indicated product:

`[(a,b),(-b,a)][(a,-b),(b,a)]`


Compute the products AB and BA whichever exists in each of the following cases:

`A= [[1      -2],[2              3]]` and  B=`[[1       2        3],[2         3         1]]`


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

Compute the elements a43 and a22 of the matrix:`A=[[0     1        0],[2      0        2],[0       3        2],[4        0       4]]` `[[2       -1],[-3           2],[4              3]]  [[0            1           -1                    2                     -2],[3       -3             4          -4                  0]]`

 


\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\]  is  root of the equation A2 − 12A − I = O


 If `[[2     3],[5      7]] [[1      -3],[-2       4]]-[[-4      6],[-9        x]]` find x.


If A=then find λ, μ so that A2 = λA + μI

 

Solve the matrix equations:

`[x1][[1,0],[-2,-3]][[x],[5]]=0`


If f (x) = x2 − 2x, find f (A), where A=


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


If `A=[[0,0],[4,0]]` find `A^16`


If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ CA ≠ O.

 

Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.

 

There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (A + B)T = AT BT


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.


 If \[A = \begin{bmatrix}\sin \alpha & \cos \alpha \\ - \cos \alpha & \sin \alpha\end{bmatrix}\] , verify that AT A = I2.
 

Express the matrix \[A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.

If  \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.

 


 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


If  \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.

 

 


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.


If A, B and C are square matrices of same order, then AB = AC always implies that B = C


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×