Advertisements
Advertisements
Question
Solution
\[Given: \hspace{0.167em} A = \begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]
\[ A^T = \begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\]
\[B = \begin{bmatrix}1 & 4 \\ 2 & 5\end{bmatrix}\]
\[ B^T = \begin{bmatrix}1 & 2 \\ 4 & 5\end{bmatrix}\]
\[Now, \]
\[AB = \begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix} \begin{bmatrix}1 & 4 \\ 2 & 5\end{bmatrix}\]
\[ \Rightarrow AB = \begin{bmatrix}1 + 6 & 4 + 15 \\ 2 + 8 & 8 + 20\end{bmatrix}\]
\[ \Rightarrow AB = \begin{bmatrix}7 & 19 \\ 10 & 28\end{bmatrix}\]
\[ \Rightarrow \left( AB \right)^T = \begin{bmatrix}7 & 10 \\ 19 & 28\end{bmatrix} . . . \left( 1 \right)\]
\[Also, \]
\[ B^T A^T = \begin{bmatrix}1 & 2 \\ 4 & 5\end{bmatrix}\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\]
\[ \Rightarrow B^T A^T = \begin{bmatrix}1 + 6 & 2 + 8 \\ 4 + 15 & 8 + 20\end{bmatrix}\]
\[ \Rightarrow B^T A^T = \begin{bmatrix}7 & 10 \\ 19 & 28\end{bmatrix} . . . \left( 2 \right)\]
\[ \therefore \left( AB \right)^T = B^T A^T \left[ \text{From eqs} . (1) and (2) \right]\]
APPEARS IN
RELATED QUESTIONS
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
Solve the matrix equations:
`[1 2 1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`
If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.
Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`
If `A=[[0,0],[4,0]]` find `A^16`
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
If A and B are square matrices of the same order, explain, why in general
(A + B) (A − B) ≠ A2 − B2
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ C, A ≠ O.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(AB)T = BT AT
If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
If `[2 1 3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- How many articles (in total) are sold by three schools?