English

Find a 2 × 2 Matrix A Such that `A=[[1,-2],[1,4]]=6l_2` - Mathematics

Advertisements
Advertisements

Question

Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`

Sum

Solution

let `A=[[w,x],[y,z]]`

\[\begin{bmatrix}w & x \\ y & z\end{bmatrix}\begin{bmatrix}1 & - 2 \\ 1 & 4\end{bmatrix} = 6 I_2 \]
\[ \Rightarrow \begin{bmatrix}w + x & - 2w + 4x \\ y + z & - 2y + 4z\end{bmatrix} = 6\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}w + x & - 2w + 4x \\ y + z & - 2y + 4z\end{bmatrix} = \begin{bmatrix}6 & 0 \\ 0 & 6\end{bmatrix}\]
The corresponding elements of two equal matrices are equal .  
\[ \therefore w + x = 6 \]
\[ \Rightarrow w = 6 - x . . . \left( 1 \right) \]
\[ - 2w + 4x = 0 . . . \left( 2 \right) \]
Putting the value of w in eq .(2) we get
\[ - 2\left( 6 - x \right) + 4x = 0\]
\[ \Rightarrow - 12 + 2x + 4x = 0\]
\[ \Rightarrow - 12 + 6x = 0\]
\[ \Rightarrow 6x = 12\]
\[ \Rightarrow x = 2\]
putting the value of  x   in eq.(1)  we  get

\[w = 6 - 2\]
\[ \Rightarrow w = 4\]
 \[Now, \]
\[y + z = 0\]
\[ \Rightarrow y = - z . . . \left( 3 \right) \]
\[ - 2y + 4z = 6 . . . \left( 4 \right) \]
 Putting the value of y in eq .( 4), we get
\[ - 2\left( - z \right) + 4z = 6\]
\[ \Rightarrow 2z + 4z = 6\]
\[ \Rightarrow 6z = 6\]
\[ \Rightarrow z = 1\]
Putting the value of z in eq .( 3 ), we get 
\[y = - 1\]
\[ \therefore A = \begin{bmatrix}4 & 2 \\ - 1 & 1\end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 49 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the indicated product.

`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`


If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


If A =`[[2     -3          -5],[-1             4           5],[1           -3       -4]]` and B =`[[2         -2            -4],[-1               3                  4],[1            2           -3]]`

, show that AB = A and BA = B.

 

For the following matrices verify the associativity of matrix multiplication i.e. (ABC = A(BC):

`A=[[4       2        3],[1       1          2],[3         0          1]]`=`B=[[1        -1          1],[0         1            2],[2           -1          1]]` and  `C= [[1       2       -1],[3       0         1],[0         0         1]]` 


For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`


\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]   , Show that A2 = A.


If [x 4 1] `[[2       1          2],[1         0          2],[0       2 -4]]`  `[[x],[4],[-1]]` = 0, find x.

 


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]


If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.


If [1 1 x] `[[1         0            2],[0           2         1],[2            1           0]] [[1],[1],[1]]` = 0, find x.


 If `[[2     3],[5      7]] [[1      -3],[-2       4]]-[[-4      6],[-9        x]]` find x.


If A=then find λ, μ so that A2 = λA + μI

 

If f (x) = x2 − 2x, find f (A), where A=


If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show  that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.


If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as

      Cost per contact

`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`

The number of contacts of each type made in two cities X and Y is given in matrix B as

       Telephone   House call    Letter

`B= [[    1000, 500,      5000],[3000,1000,     10000                ]]` 

Find the total amount spent by the group in the two cities X and Y.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000


There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?


If the matrix \[A = \begin{bmatrix}5 & 2 & x \\ y & z & - 3 \\ 4 & t & - 7\end{bmatrix}\]  is a symmetric matrix, find xyz and t.
 

 


 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.


If  \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.


If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?


What is the total number of 2 × 2 matrices with each entry 0 or 1?


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\] 


If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


If A and B are two square matrices of the same order, then AB = BA.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money collected by all three schools DPS, CVC, and KVS?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×