English

If a = [ 1 − 1 − 1 1 ] , Satisfies the Matrix Equation A2 = Ka, Write the Value of K. - Mathematics

Advertisements
Advertisements

Question

If \[A = \begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\], satisfies the matrix equation A2 = kA, write the value of k.
 
Sum

Solution

\[A^2 = AA\] 

\[ \Rightarrow A^2 = \begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\] 

\[ \Rightarrow A^2 = \begin{bmatrix}1 + 1 & - 1 - 1 \\ - 1 - 1 & 1 + 1\end{bmatrix}\] 

\[ \Rightarrow A^2 = \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix}\] 

\[Now, \] 

\[ A^2 = kA\] 

\[ \Rightarrow \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix} = k\begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\] 

\[ \Rightarrow \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix} = \begin{bmatrix}k & - k \\ - k & k\end{bmatrix}\] 

\[ \therefore k = 2\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.6 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.6 | Q 11 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Show that AB ≠ BA in each of the following cases

`A=[[-1          1           0],[0          -1           1],[2                  3                4]]`  and  =B `[[1          2            3], [0          1           0],[1        1          0]]`


If A = `[[1     0],[0        1]]`,B`[[1            0],[0       -1]]`

and C= `[[0      1],[1       0]]` 

, then show that A2 = B2 = C2 = I2.

 

If A = `[[2       -1],[3             2]]`  and B = `[[0         4],[-1          7]]`find 3A2 − 2B + I


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

If A =`[[2     -3          -5],[-1             4           5],[1           -3       -4]]` and B =`[[2         -2            -4],[-1               3                  4],[1            2           -3]]`

, show that AB = A and BA = B.

 

If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]


Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\]  is  root of the equation A2 − 12A − I = O


If A=, find k such that A2 = kA − 2I2

 

Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


If f (x) = x2 − 2x, find f (A), where A=


`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]

The number of contacts of each type made in two cities X and Y is given in the matrix B as

\[\begin{array}"Telephone & House calls & Letters\end{array}\]

\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City   X \\ City Y\end{array}\]

Find the total amount spent by the party in the two cities.

What should one consider before casting his/her vote − party's promotional activity of their social activities?

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(A − B)T = AT − BT


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


 If \[A = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}, B = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\],find `(AB)^T`

 


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.


If  \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2,   values of a and b are


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


The number of possible matrices of order 3 × 3 with each entry 2 or 0 is 


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


If A and B are square matrices of the same order, then [k (A – B)]′ = ______.


If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×