English

If A = [-3-2-4212213], B = [120-2-1-20-11] then find AB and use it to solve the following system of equations: x – 2y = 3 2x – y – z = 2 –2y + z = 3 - Mathematics

Advertisements
Advertisements

Question

If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3

Sum

Solution

Given, A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`

and B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`

Now, AB = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)][(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`

= `[(-3 + 4 + 0, -6 + 2 + 4, 0 + 4 - 4),(2 - 2 + 0, 4 - 1 - 2, 0 - 2 + 2),(2 - 2 + 0, 4 - 1 - 3, 0 - 2 + 3)]`

= `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

∴ AB = I

(AB)B–1 = IB–1

A = B–1  ...(i)

Now, equations are

x – 2y = 3

2x – y – z = 2

– 2y + z = 3

∴ `[(1, -2, 0),(2, -1, -1),(0, -2, 1)][(x),(y),(z)] = [(3),(2),(3)]`

CX = D

Here, C = BT  ...(ii)

∴  C–1(CX) = C–1 D

`\implies` IX = C–1

`\implies` X = C–1 D

= [BT]–1 D  ...[From (ii)]

= [B–1]T

= [A]T D  ...[From (i)]

X = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]^T[(3),(2),(3)]`

X = `[(-3, 2, 2),(-2, 1, 1),(-4, 2, 3)][(3),(2),(3)]`

= `[(-9 + 4 + 6),(-6 + 2 + 3),(-12 + 4 + 9)]`

`[(x),(y),(z)] = [(1),(-1),(1)]`

Hence x = 1, y = – 1 and z = 1.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find BA


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


If [x 4 1] `[[2       1          2],[1         0          2],[0       2 -4]]`  `[[x],[4],[-1]]` = 0, find x.

 


If A=then find λ, μ so that A2 = λA + μI

 

Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`


If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`


`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as

      Cost per contact

`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`

The number of contacts of each type made in two cities X and Y is given in matrix B as

       Telephone   House call    Letter

`B= [[    1000, 500,      5000],[3000,1000,     10000                ]]` 

Find the total amount spent by the group in the two cities X and Y.

 

 If \[A = \begin{bmatrix}4 & 3 \\ 1 & 2\end{bmatrix} and B = \binom{ - 4}{ 3}\] 

write AB.

 

If \[\begin{bmatrix}1 & 0 \\ y & 5\end{bmatrix} + 2\begin{bmatrix}x & 0 \\ 1 & - 2\end{bmatrix}\]  = I, where I is 2 × 2 unit matrix. Find x and y.

 


If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


For a 2 × 2 matrix A = [aij] whose elements are given by 

\[a_{ij} = \frac{i}{j}\] , write the value of a12.
 

The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


A square matrix where every element is unity is called an identity matrix.


If A, B and C are square matrices of same order, then AB = AC always implies that B = C


If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×