English

If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] And C=[[1 5 2],[-1 1 0],[0 -1 1]]` Verify That A (B − C) = Ab − Ac. - Mathematics

Advertisements
Advertisements

Question

If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.

Sum

Solution

LaTeX

\[Given: A\left( B - C \right) = AB - AC\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\left( \begin{bmatrix}0 & 5 & - 4 \\ - 2 & 1 & 3 \\ - 1 & 0 & 2\end{bmatrix} - \begin{bmatrix}1 & 5 & 2 \\ - 1 & 1 & 0 \\ 0 & - 1 & 1\end{bmatrix} \right) = \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}0 & 5 & - 4 \\ - 2 & 1 & 3 \\ - 1 & 0 & 2\end{bmatrix} - \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}1 & 5 & 2 \\ - 1 & 1 & 0 \\ 0 & - 1 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}0 - 1 & 5 - 5 & - 4 - 2 \\ - 2 + 1 & 1 - 1 & 3 - 0 \\ - 1 - 0 & 0 + 1 & 2 - 1\end{bmatrix} = \begin{bmatrix}0 - 0 + 2 & 5 + 0 - 0 & - 4 + 0 - 4 \\ 0 + 2 - 0 & 15 - 1 + 0 & - 12 - 3 + 0 \\ 0 - 2 - 1 & - 10 + 1 + 0 & 8 + 3 + 2\end{bmatrix} - \begin{bmatrix}1 - 0 - 0 & 5 + 0 + 2 & 2 + 0 - 2 \\ 3 + 1 + 0 & 15 - 1 - 0 & 6 - 0 + 0 \\ - 2 - 1 + 0 & - 10 + 1 - 1 & - 4 + 0 + 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}- 1 & 0 & - 6 \\ - 1 & 0 & 3 \\ - 1 & 1 & 1\end{bmatrix} = \begin{bmatrix}2 & 5 & - 8 \\ 2 & 14 & - 15 \\ - 3 & - 9 & 13\end{bmatrix} - \begin{bmatrix}1 & 7 & 0 \\ 4 & 14 & 6 \\ - 3 & - 10 & - 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}- 1 - 0 + 2 & 0 + 0 - 2 & - 6 + 0 - 2 \\ - 3 + 1 - 0 & 0 - 0 + 0 & - 18 - 3 + 0 \\ 2 - 1 - 1 & 0 + 0 + 1 & 12 + 3 + 1\end{bmatrix} = \begin{bmatrix}2 - 1 & 5 - 7 & - 8 - 0 \\ 2 - 4 & 14 - 14 & - 15 - 6 \\ - 3 + 3 & - 9 + 10 & 13 + 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & - 2 & - 8 \\ - 2 & 0 & - 21 \\ 0 & 1 & 16\end{bmatrix} = \begin{bmatrix}1 & - 2 & - 8 \\ - 2 & 0 & - 21 \\ 0 & 1 & 16\end{bmatrix}\]
\[ \therefore LHS = RHS\]
Hence proved .
shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 18 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the indicated product.

`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


Compute the indicated product.

`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`


Show that AB ≠ BA in each of the following cases

`A=[[-1          1           0],[0          -1           1],[2                  3                4]]`  and  =B `[[1          2            3], [0          1           0],[1        1          0]]`


Compute the products AB and BA whichever exists in each of the following cases:

`A= [[1      -2],[2              3]]` and  B=`[[1       2        3],[2         3         1]]`


Compute the products AB and BA whichever exists in each of the following cases:

A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`

 


Compute the products AB and BA whichever exists in each of the following cases:

 [ab]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O

 

\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


Solve the matrix equations:

`[x1][[1,0],[-2,-3]][[x],[5]]=0`


`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0


Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that

\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α}  & \sqrt{2}\text{sin n  α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin  n  α} \end{bmatrix}\] for all n ∈ N.

 


If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


Express the matrix \[A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.

 If \[A = \begin{bmatrix}4 & 3 \\ 1 & 2\end{bmatrix} and B = \binom{ - 4}{ 3}\] 

write AB.

 

If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?


What is the total number of 2 × 2 matrices with each entry 0 or 1?


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money (in Rs.) collected by schools CVC and KVS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×