Advertisements
Advertisements
Question
\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that
\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α} & \sqrt{2}\text{sin n α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin n α} \end{bmatrix}\] for all n ∈ N.
Solution
We shall prove the result by the principle of mathematical induction on n.
Step 1: If n = 1, by definition of integral power of a matrix, we have
\[A^1 = \begin{bmatrix}\cos 1\alpha + \sin 1\alpha & \sqrt{2}\sin 1\alpha \\ - \sqrt{2} \sin 1\alpha & \cos 1\alpha - \sin 1\alpha\end{bmatrix} = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix} = A\]So, the result is true for n = 1.
Step 2: Let the result be true for n = m. Then,
\[\]\[A^m = \begin{bmatrix}\cos m\alpha + \sin m\alpha & \sqrt{2}\sin m\alpha \\ - \sqrt{2}\sin m\alpha & \cos m\alpha - \sin m\alpha\end{bmatrix}\]
Now we shall show that the result is true for
\[n = m + 1\]
Here,
\[A^{m + 1} = \begin{bmatrix}\cos \left( m + 1 \right)\alpha + \sin \left( m + 1 \right)\alpha & \sqrt{2}\sin \left( m + 1 \right)\alpha \\ - \sqrt{2}\sin \left( m + 1 \right)\alpha & \cos \left( m + 1 \right)\alpha - \sin \left( m + 1 \right)\alpha\end{bmatrix}\]
By definition of integral power of matrix, we have
\[A^{m + 1} = A^m . A\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos m\alpha + \sin m\alpha & \sqrt{2}\sin m\alpha \\ - \sqrt{2}\sin m\alpha & \cos m\alpha - \sin m\alpha\end{bmatrix}\begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix} \left[ From eq . \left( 1 \right) \right]\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\left( \cos m\alpha + \sin m\alpha \right)\left( \cos \alpha + \sin \alpha \right) - \sqrt{2}\sin m\alpha\left( \sqrt{2}\sin \alpha \right) & \left( \cos m\alpha + \sin m\alpha \right)\left( \sqrt{2}\sin \alpha \right) + \sqrt{2}\sin m\alpha\left( \cos \alpha - \sin \alpha \right) \\ - \sqrt{2}\sin m\alpha\left( \cos \alpha + \sin \alpha \right) - \left( \cos m\alpha - \sin m\alpha \right)\left( \sqrt{2}\sin \alpha \right) & - \sqrt{2}\sin m\alpha\left( \sqrt{2}\sin \alpha \right) + \left( \cos m\alpha - \sin m\alpha \right)\left( \cos \alpha - \sin \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos m\alpha \cos\alpha + \sin m\alpha \cos\alpha + \cos m\alpha \sin\alpha + \sin m\alpha \sin\alpha - 2\sin m\alpha \sin\alpha & \sqrt{2}\sin \alpha \cos m\alpha + \sqrt{2}\sin \alpha \sin m\alpha + \sqrt{2}\sin m\alpha \cos\alpha - \sqrt{2}\sin ma \sin\alpha \\ - \sqrt{2}\sin ma \cos\alpha - \sqrt{2}\sin ma \sin\alpha - \sqrt{2}\sin \alpha \cos m\alpha + \sqrt{2}\sin \alpha \sin m\alpha & - 2\sin \alpha \sin m\alpha + \cos m\alpha \cos\alpha - \sin m\alpha \cos\alpha - \cos m\alpha \sin\alpha + \sin m\alpha \sin\alpha\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m\alpha - \alpha \right) + \sin\left( m\alpha + \alpha \right) - \cos\left( m\alpha - \alpha \right) + \cos\left( m\alpha + \alpha \right) & \sqrt{2}\sin\left( m\alpha + \alpha \right) \\ - \sqrt{2}\sin\left( m\alpha + \alpha \right) & \cos\left( m\alpha + \alpha \right) - \sin\left( m\alpha + \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m\alpha + \alpha \right) + \sin\left( m\alpha + \alpha \right) & \sqrt{2}\sin\left( m\alpha + a \right) \\ - \sqrt{2}\sin\left( m\alpha + \alpha \right) & \cos\left( m\alpha + \alpha \right) - \sin\left( m\alpha + \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m + 1 \right)\alpha + \sin\left( m + 1 \right)\alpha & \sqrt{2}\sin\left( m + 1 \right)\alpha \\ - \sqrt{2}\sin\left( m + 1 \right)\alpha & \cos\left( m + 1 \right)\alpha - \sin\left( m + 1 \right)\alpha\end{bmatrix}\]
\[\]This show that when the result is true for n = m, it is also true for n = m +1.
Hence, by the principle of mathematical induction, the result is valid for all n
\[\in N\]
APPEARS IN
RELATED QUESTIONS
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the products AB and BA whichever exists in each of the following cases:
A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A =-[[1 2 0],[-1 0 1]]`,`B=[[1 0],[-1 2],[0 3]]` and C= `[[1],[-1]]`
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + X = 0.
Give examples of matrices
A and B such that AB ≠ BA
If A and B are square matrices of the same order, explain, why in general
(A − B)2 ≠ A2 − 2AB + B2
If A and B are square matrices of the same order, explain, why in general
(A + B) (A − B) ≠ A2 − B2
Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ C, A ≠ O.
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
To promote making of toilets for women, an organisation tried to generate awarness through (i) house calls, (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:
(i) ₹50 (ii) ₹20 (iii) ₹40
The number of attempts made in three villages X, Y and Z are given below:
(i) (ii) (iii)
X 400 300 100
Y 300 250 75
Z 500 400 150
Find the total cost incurred by the organisation for three villages separately, using matrices.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.
What is the total number of 2 × 2 matrices with each entry 0 or 1?
Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is
Disclaimer: option (a) and (d) both are the same.
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
A square matrix where every element is unity is called an identity matrix.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?
Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be ______.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3