Advertisements
Advertisements
प्रश्न
\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that
\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α} & \sqrt{2}\text{sin n α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin n α} \end{bmatrix}\] for all n ∈ N.
उत्तर
We shall prove the result by the principle of mathematical induction on n.
Step 1: If n = 1, by definition of integral power of a matrix, we have
\[A^1 = \begin{bmatrix}\cos 1\alpha + \sin 1\alpha & \sqrt{2}\sin 1\alpha \\ - \sqrt{2} \sin 1\alpha & \cos 1\alpha - \sin 1\alpha\end{bmatrix} = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix} = A\]So, the result is true for n = 1.
Step 2: Let the result be true for n = m. Then,
\[\]\[A^m = \begin{bmatrix}\cos m\alpha + \sin m\alpha & \sqrt{2}\sin m\alpha \\ - \sqrt{2}\sin m\alpha & \cos m\alpha - \sin m\alpha\end{bmatrix}\]
Now we shall show that the result is true for
\[n = m + 1\]
Here,
\[A^{m + 1} = \begin{bmatrix}\cos \left( m + 1 \right)\alpha + \sin \left( m + 1 \right)\alpha & \sqrt{2}\sin \left( m + 1 \right)\alpha \\ - \sqrt{2}\sin \left( m + 1 \right)\alpha & \cos \left( m + 1 \right)\alpha - \sin \left( m + 1 \right)\alpha\end{bmatrix}\]
By definition of integral power of matrix, we have
\[A^{m + 1} = A^m . A\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos m\alpha + \sin m\alpha & \sqrt{2}\sin m\alpha \\ - \sqrt{2}\sin m\alpha & \cos m\alpha - \sin m\alpha\end{bmatrix}\begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix} \left[ From eq . \left( 1 \right) \right]\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\left( \cos m\alpha + \sin m\alpha \right)\left( \cos \alpha + \sin \alpha \right) - \sqrt{2}\sin m\alpha\left( \sqrt{2}\sin \alpha \right) & \left( \cos m\alpha + \sin m\alpha \right)\left( \sqrt{2}\sin \alpha \right) + \sqrt{2}\sin m\alpha\left( \cos \alpha - \sin \alpha \right) \\ - \sqrt{2}\sin m\alpha\left( \cos \alpha + \sin \alpha \right) - \left( \cos m\alpha - \sin m\alpha \right)\left( \sqrt{2}\sin \alpha \right) & - \sqrt{2}\sin m\alpha\left( \sqrt{2}\sin \alpha \right) + \left( \cos m\alpha - \sin m\alpha \right)\left( \cos \alpha - \sin \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos m\alpha \cos\alpha + \sin m\alpha \cos\alpha + \cos m\alpha \sin\alpha + \sin m\alpha \sin\alpha - 2\sin m\alpha \sin\alpha & \sqrt{2}\sin \alpha \cos m\alpha + \sqrt{2}\sin \alpha \sin m\alpha + \sqrt{2}\sin m\alpha \cos\alpha - \sqrt{2}\sin ma \sin\alpha \\ - \sqrt{2}\sin ma \cos\alpha - \sqrt{2}\sin ma \sin\alpha - \sqrt{2}\sin \alpha \cos m\alpha + \sqrt{2}\sin \alpha \sin m\alpha & - 2\sin \alpha \sin m\alpha + \cos m\alpha \cos\alpha - \sin m\alpha \cos\alpha - \cos m\alpha \sin\alpha + \sin m\alpha \sin\alpha\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m\alpha - \alpha \right) + \sin\left( m\alpha + \alpha \right) - \cos\left( m\alpha - \alpha \right) + \cos\left( m\alpha + \alpha \right) & \sqrt{2}\sin\left( m\alpha + \alpha \right) \\ - \sqrt{2}\sin\left( m\alpha + \alpha \right) & \cos\left( m\alpha + \alpha \right) - \sin\left( m\alpha + \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m\alpha + \alpha \right) + \sin\left( m\alpha + \alpha \right) & \sqrt{2}\sin\left( m\alpha + a \right) \\ - \sqrt{2}\sin\left( m\alpha + \alpha \right) & \cos\left( m\alpha + \alpha \right) - \sin\left( m\alpha + \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m + 1 \right)\alpha + \sin\left( m + 1 \right)\alpha & \sqrt{2}\sin\left( m + 1 \right)\alpha \\ - \sqrt{2}\sin\left( m + 1 \right)\alpha & \cos\left( m + 1 \right)\alpha - \sin\left( m + 1 \right)\alpha\end{bmatrix}\]
\[\]This show that when the result is true for n = m, it is also true for n = m +1.
Hence, by the principle of mathematical induction, the result is valid for all n
\[\in N\]
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find AB
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
If
If f (x) = x2 − 2x, find f (A), where A=
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + X = 0.
Give examples of matrices
A and B such that AB ≠ BA
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(AB)T = BT AT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
If A and B are square matrices of the same order, then (AB)′ = ______.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
A square matrix where every element is unity is called an identity matrix.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?
If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.