मराठी

If `A=[[Cos ∝ +Sin ∝],[-sqrt2sin ∝ Cos ∝-s ∝]]` Prove that `A^N=[[Cos N∝+Sin N∝,Sqrt2 N∝],[-sqrt2 Sin N∝,Cos N∝-sin N∝]]` for All `N∈ N`. - Mathematics

Advertisements
Advertisements

प्रश्न

\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that

\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α}  & \sqrt{2}\text{sin n  α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin  n  α} \end{bmatrix}\] for all n ∈ N.

 

बेरीज

उत्तर

We shall prove the result by the principle of mathematical induction on n.

Step 1:  If n = 1, by definition of integral power of a matrix, we have

\[A^1 = \begin{bmatrix}\cos 1\alpha + \sin 1\alpha & \sqrt{2}\sin 1\alpha \\ - \sqrt{2} \sin 1\alpha & \cos 1\alpha - \sin 1\alpha\end{bmatrix} = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix} = A\]So, the result is true for n = 1.

Step 2: Let the result be true for n = m. Then,
\[\]\[A^m = \begin{bmatrix}\cos m\alpha + \sin m\alpha & \sqrt{2}\sin m\alpha \\ - \sqrt{2}\sin m\alpha & \cos m\alpha - \sin m\alpha\end{bmatrix}\]

Now we shall show that the result is true for

\[n = m + 1\]

Here,

 

\[A^{m + 1} = \begin{bmatrix}\cos \left( m + 1 \right)\alpha + \sin \left( m + 1 \right)\alpha & \sqrt{2}\sin \left( m + 1 \right)\alpha \\ - \sqrt{2}\sin \left( m + 1 \right)\alpha & \cos \left( m + 1 \right)\alpha - \sin \left( m + 1 \right)\alpha\end{bmatrix}\]

By definition of integral power of matrix, we have

\[A^{m + 1} = A^m . A\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos m\alpha + \sin m\alpha & \sqrt{2}\sin m\alpha \\ - \sqrt{2}\sin m\alpha & \cos m\alpha - \sin m\alpha\end{bmatrix}\begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix} \left[ From eq . \left( 1 \right) \right]\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\left( \cos m\alpha + \sin m\alpha \right)\left( \cos \alpha + \sin \alpha \right) - \sqrt{2}\sin m\alpha\left( \sqrt{2}\sin \alpha \right) & \left( \cos m\alpha + \sin m\alpha \right)\left( \sqrt{2}\sin \alpha \right) + \sqrt{2}\sin m\alpha\left( \cos \alpha - \sin \alpha \right) \\ - \sqrt{2}\sin m\alpha\left( \cos \alpha + \sin \alpha \right) - \left( \cos m\alpha - \sin m\alpha \right)\left( \sqrt{2}\sin \alpha \right) & - \sqrt{2}\sin m\alpha\left( \sqrt{2}\sin \alpha \right) + \left( \cos m\alpha - \sin m\alpha \right)\left( \cos \alpha - \sin \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos m\alpha \cos\alpha + \sin m\alpha \cos\alpha + \cos m\alpha \sin\alpha + \sin m\alpha \sin\alpha - 2\sin m\alpha \sin\alpha & \sqrt{2}\sin \alpha \cos m\alpha + \sqrt{2}\sin \alpha \sin m\alpha + \sqrt{2}\sin m\alpha \cos\alpha - \sqrt{2}\sin ma \sin\alpha \\ - \sqrt{2}\sin ma \cos\alpha - \sqrt{2}\sin ma \sin\alpha - \sqrt{2}\sin \alpha \cos m\alpha + \sqrt{2}\sin \alpha \sin m\alpha & - 2\sin \alpha \sin m\alpha + \cos m\alpha \cos\alpha - \sin m\alpha \cos\alpha - \cos m\alpha \sin\alpha + \sin m\alpha \sin\alpha\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m\alpha - \alpha \right) + \sin\left( m\alpha + \alpha \right) - \cos\left( m\alpha - \alpha \right) + \cos\left( m\alpha + \alpha \right) & \sqrt{2}\sin\left( m\alpha + \alpha \right) \\ - \sqrt{2}\sin\left( m\alpha + \alpha \right) & \cos\left( m\alpha + \alpha \right) - \sin\left( m\alpha + \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m\alpha + \alpha \right) + \sin\left( m\alpha + \alpha \right) & \sqrt{2}\sin\left( m\alpha + a \right) \\ - \sqrt{2}\sin\left( m\alpha + \alpha \right) & \cos\left( m\alpha + \alpha \right) - \sin\left( m\alpha + \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m + 1 \right)\alpha + \sin\left( m + 1 \right)\alpha & \sqrt{2}\sin\left( m + 1 \right)\alpha \\ - \sqrt{2}\sin\left( m + 1 \right)\alpha & \cos\left( m + 1 \right)\alpha - \sin\left( m + 1 \right)\alpha\end{bmatrix}\]
\[\]This show that when the result is true for n = m, it is also true for n = m +1. 

Hence, by the principle of mathematical induction, the result is valid for all n

\[\in N\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.3 | Q 59 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


Compute the indicated products:

`[[a    b],[-b      a]][[a     -b],[b         a]]`


Compute the indicated products:

`[[1     -2],[2     3]][[1         2        3],[-3    2      -1]]`


Show that AB ≠ BA in each of the following cases

`A=[[-1          1           0],[0          -1           1],[2                  3                4]]`  and  =B `[[1          2            3], [0          1           0],[1        1          0]]`


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O

 

If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

If A =`[[2     -3          -5],[-1             4           5],[1           -3       -4]]` and B =`[[2         -2            -4],[-1               3                  4],[1            2           -3]]`

, show that AB = A and BA = B.

 

For the following matrices verify the associativity of matrix multiplication i.e. (ABC = A(BC):

`A=[[4       2        3],[1       1          2],[3         0          1]]`=`B=[[1        -1          1],[0         1            2],[2           -1          1]]` and  `C= [[1       2       -1],[3       0         1],[0         0         1]]` 


For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`


If


If f (x) = x2 − 2x, find f (A), where A=


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 

Give examples of matrices
A and B such that AB ≠ BA


Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

If \[A = \begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\], satisfies the matrix equation A2 = kA, write the value of k.
 

Write matrix A satisfying   ` A+[[2      3],[-1   4]] =[[3     6],[- 3     8]]`.


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If  \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals 

 


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix


If A and B are square matrices of the same order, then (AB)′ = ______.


If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)


A square matrix where every element is unity is called an identity matrix.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?

If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×