मराठी

`A=[[2,0,1],[2,1,3],[1,-1,0]]` , Find A2 − 5a + 4i And Hence Find a Matrix X Such That A2 − 5a + 4i + X = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 
बेरीज

उत्तर

Given: 

\[A = \begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix}\]\[A^2 = \begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix}\begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}4 + 0 + 1 & 0 + 0 - 1 & 2 + 0 + 0 \\ 4 + 2 + 3 & 0 + 1 - 3 & 2 + 3 + 0 \\ 2 - 2 + 0 & 0 - 1 - 0 & 1 - 3 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}5 & - 1 & 2 \\ 9 & - 2 & 5 \\ 0 & - 1 & - 2\end{bmatrix}\]

Now,

\[A^2 - 5A + 4I = \begin{bmatrix}5 & - 1 & 2 \\ 9 & - 2 & 5 \\ 0 & - 1 & - 2\end{bmatrix} - 5\begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & - 1 & 0\end{bmatrix} + 4\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ = \begin{bmatrix}5 - 10 + 4 & - 1 - 0 + 0 & 2 - 5 + 0 \\ 9 - 10 + 0 & - 2 - 5 + 4 & 5 - 15 + 0 \\ 0 - 5 + 0 & - 1 + 5 + 0 & - 2 - 0 + 4\end{bmatrix}\]
\[ = \begin{bmatrix}- 1 & - 1 & - 3 \\ - 1 & - 3 & - 10 \\ - 5 & 4 & 2\end{bmatrix}\]\

Now,   A2 − 5A + 4I + = 0
⇒ = −(A2 − 5A + 4I)

∴ `X =[[ -  1  - 1  - 3] ,[- 1  - 3 - 10],[- 5     4           2]]`
`=[[1            1               3] ,[ 1         3              10], [ 5    -4       - 2]]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.3 | Q 55 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that AB ≠ BA in each of the following cases:

`A= [[5    -1],[6        7]]`And B =`[[2       1],[3         4]]`


If A = `[[2       -1],[3             2]]`  and B = `[[0         4],[-1          7]]`find 3A2 − 2B + I


If A =  `[[4       2],[-1        1]]` 

, prove that (A − 2I) (A − 3I) = O

 

If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


If 

 


If A=, find k such that A2 = kA − 2I2

 

Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


Give examples of matrices

A and B such that AB = O but BA ≠ O.


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (A + B)T = AT BT


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.


 If \[A = \begin{bmatrix}4 & 3 \\ 1 & 2\end{bmatrix} and B = \binom{ - 4}{ 3}\] 

write AB.

 

If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.

 

 


 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


What is the total number of 2 × 2 matrices with each entry 0 or 1?


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ? 


If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


A square matrix where every element is unity is called an identity matrix.


If A, B and C are square matrices of same order, then AB = AC always implies that B = C


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×