Advertisements
Advertisements
प्रश्न
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
उत्तर
We shall prove the result by the principle of mathematical induction on n.
Step 1: If n = 1, by definition of integral power of a matrix, we have
\[A^1 = \begin{bmatrix}a^1 & b\left( a^1 - 1 \right)/a - 1 \\ 0 & 1\end{bmatrix} = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix} = A\]
So, the result is true for n = 1.
Step 2: Let the result be true for n = m. Then,
\[A^m = \begin{bmatrix}a^m & b\left( a^m - 1 \right)/a - 1 \\ 0 & 1\end{bmatrix}\] ...(1)
Now, we shall show that the result is true for
\[n = m + 1\]
Here,
\[A^{m + 1} = \begin{bmatrix}a^{m + 1} & b\left( a^{m + 1} - 1 \right)/a - 1 \\ 0 & 1\end{bmatrix}\]
By definition of integral power of matrix, we have
\[A^{m + 1} = A^m A\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}a^m & b\left( a^m - 1 \right)/a - 1 \\ 0 & 1\end{bmatrix}\begin{bmatrix}a & b \\ 0 & 1\end{bmatrix} \left[\text{From eq .} \left( 1 \right) \right]\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}a^m a + 0 & \left\{ a^m b + b\left( a^m - 1 \right) \right\}/a - 1 \\ 0 + 0 & 0 + 1\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}a^{m + 1} & \left( a^{m + 1} b - a^m b + a^m b - b \right)/a - 1 \\ 0 & 1\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}a^{m + 1} & b\left( a^{m + 1} - 1 \right)/a - 1 \\ 0 & 1\end{bmatrix}\]
\[\]
This shows that when the result is true for n = m, it is also true for n = m +1.
Hence, by the principle of mathematical induction, the result is valid for any positive integer n.
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Compute the products AB and BA whichever exists in each of the following cases:
A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0
If f (x) = x2 − 2x, find f (A), where A=
If `A=[[0,0],[4,0]]` find `A^16`
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Give examples of matrices
A and B such that AB ≠ BA
If A and B are square matrices of the same order, explain, why in general
(A − B)2 ≠ A2 − 2AB + B2
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ C, A ≠ O.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}"Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
write AB.
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
What is the total number of 2 × 2 matrices with each entry 0 or 1?
If `[2 1 3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.