Advertisements
Advertisements
Question
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
Solution
\[Given: \hspace{0.167em} A = \begin{bmatrix}3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5\end{bmatrix}\]
\[Here, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5\end{bmatrix}\begin{bmatrix}3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}9 + 2 + 0 & 6 + 8 + 0 & 0 + 0 + 0 \\ 3 + 4 + 0 & 2 + 16 + 0 & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 25\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}11 & 14 & 0 \\ 7 & 18 & 0 \\ 0 & 0 & 25\end{bmatrix}\]
\[\]
\[Now, \]
\[ A^2 - 7A + 10 I_3 \]
\[ \Rightarrow A^2 - 7A + 10 I_3 = \begin{bmatrix}11 & 14 & 0 \\ 7 & 18 & 0 \\ 0 & 0 & 25\end{bmatrix} - 7\begin{bmatrix}3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5\end{bmatrix} + 10\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow A^2 - 7A + 10 I_3 = \begin{bmatrix}11 & 14 & 0 \\ 7 & 18 & 0 \\ 0 & 0 & 25\end{bmatrix} - \begin{bmatrix}21 & 14 & 0 \\ 7 & 28 & 0 \\ 0 & 0 & 35\end{bmatrix} + \begin{bmatrix}10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10\end{bmatrix}\]
\[ \Rightarrow A^2 - 7A + 10 I_3 = \begin{bmatrix}11 - 21 + 10 & 14 - 14 + 0 & 0 - 0 + 0 \\ 7 - 7 + 0 & 18 - 28 + 10 & 0 - 0 + 0 \\ 0 - 0 + 0 & 0 - 0 + 0 & 25 - 35 + 10\end{bmatrix}\]
\[ \Rightarrow A^2 - 7A + 10 I_3 = \begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix} = 0\]
\[\]
APPEARS IN
RELATED QUESTIONS
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find AB
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Show that AB ≠ BA in each of the following cases:
`A= [[5 -1],[6 7]]`And B =`[[2 1],[3 4]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If
Find the value of x for which the matrix product`[[2 0 7],[0 1 0],[1 -2 1]]` `[[-x 14x 7x],[0 1 0],[x -4x -2x]]`equal an identity matrix.
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
Give examples of matrices
A and B such that AB ≠ BA
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
To promote making of toilets for women, an organisation tried to generate awarness through (i) house calls, (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:
(i) ₹50 (ii) ₹20 (iii) ₹40
The number of attempts made in three villages X, Y and Z are given below:
(i) (ii) (iii)
X 400 300 100
Y 300 250 75
Z 500 400 150
Find the total cost incurred by the organisation for three villages separately, using matrices.
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
What is the total number of 2 × 2 matrices with each entry 0 or 1?
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal