Advertisements
Advertisements
Question
Without using the concept of inverse of a matrix, find the matrix `[[x y],[z u]]` such that
`[[5 -7],[-2 3]][[x y],[z u]]=[[-16 -6],[7 2]]`
Solution
\[Given: \begin{bmatrix}5 & - 7 \\ - 2 & 3\end{bmatrix}\begin{bmatrix}x & y \\ z & u\end{bmatrix} = \begin{bmatrix}- 16 & - 6 \\ 7 & 2\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}5x - 7z & 5y - 7u \\ - 2x + 3z & - 2y + 3u\end{bmatrix} = \begin{bmatrix}- 16 & - 6 \\ 7 & 2\end{bmatrix}\]
\[\]
The corresponding elements of two equal matrices are equal .
\[ \therefore 5x - 7z = - 16 . . . \left( 1 \right) \]
\[5y - 7u = - 6 . . . \left( 2 \right) \]
\[\]
\[ - 2y + 3u = 2 \]
\[ \Rightarrow 3u = 2 + 2y\]
\[ \Rightarrow u = \frac{2 + 2y}{3} . . . \left( 3 \right) \]
\[ - 2x + 3z = 7 \]
\[ \Rightarrow 3z = 7 + 2x \]
\[ \Rightarrow z = \frac{7 + 2x}{3} . . . \left( 4 \right) \]
\[\] putting the value of z in eq.(1,we get )
\[5x - 7\left( \frac{7 + 2x}{3} \right) = - 16\]
\[ \Rightarrow 5x - \frac{49 + 14x}{3} = - 16\]
\[ \Rightarrow \frac{15x - 49 - 14x}{3} = - 16\]
\[ \Rightarrow x - 49 = - 48\]
\[ \Rightarrow x = - 48 + 49\]
\[ \therefore x = 1\]
\[\]
putting the value of x in eq.(4),we get
\[z = \frac{7 + 2\left( 1 \right)}{3}\]
\[ \Rightarrow z = \frac{9}{3} = 3\]
\[\]
putting the value of u in eq.(2), we get
\[5y - 7\left( \frac{2 + 2y}{3} \right) = - 6\]
\[ \Rightarrow 5y - \frac{14 + 14y}{3} = - 6\]
\[ \Rightarrow \frac{15y - 14 - 14y}{3} = - 6\]
\[ \Rightarrow y - 14 = - 18\]
\[ \Rightarrow y = - 18 + 14\]
\[ \therefore y = - 4\]
\[\]
putting the value of y in eq.(3),we get
\[u = \frac{2 + 2\left( - 4 \right)}{3}\]
\[ \Rightarrow u = - 2\]
\[\]
\[ \therefore \begin{bmatrix}x & y \\ z & u\end{bmatrix} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
A typist charges Rs. 145 for typing 10 English and 3 Hindi pages, while charges for typing 3 English and 10 Hindi pages are Rs. 180. Using matrices, find the charges of typing one English and one Hindi page separately. However typist charged only Rs. 2 per page from a poor student Shyam for 5 Hindi pages. How much less was charged from this poor boy? Which values are reflected in this problem?
If A = `[[1,-2,3],[0,-1,4],[-2,2,1]]` ,find (A')-1
Construct a 2 × 3 matrix whose elements aij are given by :
(i) aij = i . j
Find the matrix A such that `[[1 1],[0 1]]A=[[3 3 5],[1 0 1]]`
Find the matrix A such that `A=[[1,2,3],[4,5,6]]=` `[[-7,-8,-9],[2,4,6]]`
Find the matrix A such that `[[4],[1],[3]] A=[[-4,8,4],[-1,2,1],[-3,6,3]]`
If A = `[(1, 1, 1),(0, 1, 3),(1, -2, 1)]`,find A-1
hence, solve the following system of equations
x + y + z = 6
y + 3z =11
x- 2y + z = 0
Find the inverse of the following matrix using elementary operations.
`"A" = [(1,2,-2), (-1,3,0),(0,-2,1)]`
Using elementary row transformation, find the inverse of the matrix
`[(2,-3,5),(3,2,-4),(1,1,-2)]`
A square matrix A is called idempotent if ____________.
Using elementary transformation, find the inverse of a matrix `[(-1,1,2),(1,2,3),(3,1,1)]`
If `[("x + y", 2"x + z"),("x - y", 2"z + w")] = [(4,7),(0,10)]` then the values of x, y, z and w respectively are ____________.
`[("x" + 3, "z" + 4, 2"y" - 7),(4"x" + 6, a - 1, 0),("b" - 3, 3"b", "z"+ 2"c")] = [(0,6,3"y" - 2),(2"x", -3, 2"c" + 2),(2"b" + 4, -21,0)]` then find the values of a, b, c, x, y, and z respectively.
If A2 – A + I = O, then the inverse of A is ____________.
If `[(2 + "x", 3,4),(1,-1,2),("x", 1,-5)]` is singular matrix, ten x is ____________.
Value of k, for which A = `[("k",8),(4,2"k")]` is a singular matrix is:
Given that A is a non-singular matrix of order 3 such that A2 = 2A, then the value of |2A| is:
If A = `["a"_("ij")]` is a 2 x 3 matrix, such that `"a"_("ij") = ("-i" + 2"j")^2/5.` then a23 is ____________.
If A = `[a_ÿ]` is a square matrix of order n, then elements (entries) a11, a22,------ann are said to constitute the ------ of the matrix A