English

Find the Matrix A Such that `A=[[1,2,3],[4,5,6]]=` `[[-7,-5,-9],[2,4,6]]` - Mathematics

Advertisements
Advertisements

Question

Find the matrix A such that `A=[[1,2,3],[4,5,6]]=`  `[[-7,-8,-9],[2,4,6]]`

Sum

Solution

\[\left( ii \right) Let A = \begin{bmatrix}w & x \\ y & z\end{bmatrix}\]
\[ \Rightarrow A\begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6\end{bmatrix} = \begin{bmatrix}- 7 & - 8 & - 9 \\ 2 & 4 & 6\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}w & x \\ y & z\end{bmatrix}\begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6\end{bmatrix} = \begin{bmatrix}- 7 & - 8 & - 9 \\ 2 & 4 & 6\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}w + 4x & 2w + 5x & 3w + 6x \\ y + 4z & 2y + 5z & 3y + 6z\end{bmatrix} = \begin{bmatrix}- 7 & - 8 & - 9 \\ 2 & 4 & 6\end{bmatrix}\]
\[\]
The correspnding elements of two equal matrices are equal .
\[ \therefore 3w + 6x = - 9 . . . \left( 1 \right) \]
\[ y + 4z = 2 \]
\[y = 2 - 4z . . . \left( 2 \right) \]
\[w + 4x = - 7 \]
\[ \Rightarrow w = - 7 - 4x . . . \left( 3 \right) \]
\[2y + 5z = 4 . . . \left( 4 \right) \]
putting the value of w   in eq.(1), we  get
\[3\left( - 7 - 4x \right) + 6x = - 9\]
\[ \Rightarrow - 21 - 12x + 6x = - 9\]
\[ \Rightarrow - 6x = 12\]
\[ \Rightarrow x = - 2\]
putting the value of x  in eq.(3), we  get
\[w = - 7 - 4\left( - 2 \right) \]
\[ \Rightarrow w = - 7 + 8\]
\[ \Rightarrow w = 1\]
putting the value of y   in eq.(4), we  get
\[2\left( 2 - 4z \right) + 5z = 4\]
\[ \Rightarrow 4 - 8z + 5z = 4\]
\[ \Rightarrow 4 - 3z = 4\]
\[ \Rightarrow - 3z = 0\]
\[ \Rightarrow z = 0\]
putting the value of  z in eq.(2), we  get
\[ y = 2 - 4\left( 0 \right) \]
\[ \Rightarrow y = 2\]
\[ \therefore A = \begin{bmatrix}1 & - 2 \\ 2 & 0\end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 48.2 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.


A typist charges Rs. 145 for typing 10 English and 3 Hindi pages, while charges for typing 3 English and 10 Hindi pages are Rs. 180. Using matrices, find the charges of typing one English and one Hindi page separately. However typist charged only Rs. 2 per page from a poor student Shyam for 5 Hindi pages. How much less was charged from this poor boy? Which values are reflected in this problem?


 

If A = `[[1,-2,3],[0,-1,4],[-2,2,1]]` ,find (A')-1

 

Matrices A and B will be inverse of each other only if ______.


Construct a 2 × 3 matrix whose elements aij are given by :

(i) aij = j


Construct a 2 × 3 matrix whose elements aij are given by :

(ii) aij = 2i − j


Construct a 2 × 3 matrix whose elements aij are given by :

(iii) aij = i + j


Construct a 2 × 3 matrix whose elements aij are given by :

(iv) aij =`(i+j)^2/2` 


Without using the concept of inverse of a matrix, find the matrix `[[x       y],[z       u]]` such that
`[[5     -7],[-2         3]][[x        y],[z         u]]=[[-16       -6],[7                   2]]`


Find the matrix A such that `[[1     1],[0       1]]A=[[3        3         5],[1       0          1]]`


If A = `[(1, 1, 1),(0, 1, 3),(1, -2, 1)]`,find A-1

hence, solve the following system of equations

x + y + z = 6
y + 3z =11
x- 2y + z = 0


Find the inverse of the following matrix using elementary operations.

`"A" = [(1,2,-2), (-1,3,0),(0,-2,1)]`


Using elementary row transformation, find the inverse of the matrix

`[(2,-3,5),(3,2,-4),(1,1,-2)]`


A square matrix A is called idempotent if ____________.


Using elementary transformation, find the inverse of a matrix `[(-1,1,2),(1,2,3),(3,1,1)]`


`[("x" + 3, "z" + 4, 2"y" - 7),(4"x" + 6, a - 1, 0),("b" - 3, 3"b", "z"+ 2"c")] = [(0,6,3"y" - 2),(2"x", -3, 2"c" + 2),(2"b" + 4, -21,0)]` then find the values of a, b, c, x, y, and z respectively.


If A2 – A + I = O, then the inverse of A is ____________.


If `[(2 + "x", 3,4),(1,-1,2),("x", 1,-5)]` is singular matrix, ten x is ____________.


Value of k, for which A = `[("k",8),(4,2"k")]` is a singular matrix is:


Given that A is a non-singular matrix of order 3 such that A2 = 2A, then the value of |2A| is:


If A = `["a"_("ij")]` is a 2 x 3 matrix, such that `"a"_("ij") = ("-i" + 2"j")^2/5.` then a23 is ____________.


If A = `[a_ÿ]` is a square matrix of order n, then elements (entries) a11, a22,------ann are said to constitute the ------ of the matrix A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×