English

A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. - Mathematics

Advertisements
Advertisements

Question

A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.

Solution

As there are 3 varieties of pen A, B and C

Meenu purchased 1 pen of each variety which costs her Rs 21

Therefore, A+B+C=21Similarly, 

For Jeevan

4A+3B+2C=60

For Shikha

 6A+2B+3C=70

`[[1,1,1],[4,3,2],[6,2,3]][[A],[B],[C]]=[[21],[60],[70]]`

`where P=[[1,1,1],[4,3,2],[6,2,3]], Q=[[21],[60],[70]]`

P|=1(94)1(1212)+1(818)

=50

P1 existsX=P1Q

C11=5        

C12=0          

C13=10

C21=1    

C22=3     

C23=4

C31=1     

C32=2         

C33=1

`adj P=[[5,0,-10],[-1,-3,4],[-1,2,-1]]^T=[[5,-1,-1],[0,-3,2],[-10,4,-1]]`

`P^-1=1/-5[[5,-1,-1],[0,-3,2],[-10,4,-1]]`

`X=P^-1 Q`

`=1/-5[[5,-1,-1],[0,-3,2],[-10,4,-1]] [[21],[60],[70]]= 1/-5 [[105-60-70],[0-180+140],[-210+240-70]]`

`=-1/5 [[-25],[-40],[-40]]`

`therefore X=[[5],[8],[8]]`

Therefore, cost of A variety of pens =Rs 5

Cost of B variety of pens =Rs 8

Cost of C variety of pens =Rs 8

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 2 C

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A typist charges Rs. 145 for typing 10 English and 3 Hindi pages, while charges for typing 3 English and 10 Hindi pages are Rs. 180. Using matrices, find the charges of typing one English and one Hindi page separately. However typist charged only Rs. 2 per page from a poor student Shyam for 5 Hindi pages. How much less was charged from this poor boy? Which values are reflected in this problem?


Matrices A and B will be inverse of each other only if ______.


Construct a 2 × 3 matrix whose elements aij are given by :

(i) aij = j


Construct a 2 × 3 matrix whose elements aij are given by :

(ii) aij = 2i − j


Construct a 2 × 3 matrix whose elements aij are given by :

(iii) aij = i + j


Construct a 2 × 3 matrix whose elements aij are given by :

(iv) aij =`(i+j)^2/2` 


Find the matrix A such that `[[1     1],[0       1]]A=[[3        3         5],[1       0          1]]`


Find the matrix A such that `A=[[1,2,3],[4,5,6]]=`  `[[-7,-8,-9],[2,4,6]]`


Find the matrix A such that `[[4],[1],[3]]  A=[[-4,8,4],[-1,2,1],[-3,6,3]]`


If A = `[(1, 1, 1),(0, 1, 3),(1, -2, 1)]`,find A-1

hence, solve the following system of equations

x + y + z = 6
y + 3z =11
x- 2y + z = 0


Find the inverse of the following matrix using elementary operations.

`"A" = [(1,2,-2), (-1,3,0),(0,-2,1)]`


Using elementary row transformation, find the inverse of the matrix

`[(2,-3,5),(3,2,-4),(1,1,-2)]`


Using elementary transformation, find the inverse of a matrix `[(-1,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the matrix A `= [(1,3),(2,7)],` using elementary row transformation.


`[("x" + 3, "z" + 4, 2"y" - 7),(4"x" + 6, a - 1, 0),("b" - 3, 3"b", "z"+ 2"c")] = [(0,6,3"y" - 2),(2"x", -3, 2"c" + 2),(2"b" + 4, -21,0)]` then find the values of a, b, c, x, y, and z respectively.


If `[(2 + "x", 3,4),(1,-1,2),("x", 1,-5)]` is singular matrix, ten x is ____________.


Value of k, for which A = `[("k",8),(4,2"k")]` is a singular matrix is:


Given that A is a non-singular matrix of order 3 such that A2 = 2A, then the value of |2A| is:


If A = `["a"_("ij")]` is a 2 x 3 matrix, such that `"a"_("ij") = ("-i" + 2"j")^2/5.` then a23 is ____________.


If A = `[a_ÿ]` is a square matrix of order n, then elements (entries) a11, a22,------ann are said to constitute the ------ of the matrix A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×