English

Construct a 2 × 3 Matrix Whose Elements Aij Are Given by : (I) Aij = I . J - Mathematics

Advertisements
Advertisements

Question

Construct a 2 × 3 matrix whose elements aij are given by :

(i) aij = j

Sum

Solution

Here,

`aij= i . j,1≤ i ≤ 2 and  1≤ j ≤ 3 `

`a_11= 1 xx 1 = 1 , a_12 = 1xx 2 = 2 , a_13= 1xx3=3`

`a_21=2xx1=2, a_22=2xx2=4 and a_23=2xx3=6 `

Required matrix =A =`[[1,2,3],[2,4,6]]`

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.1 | Q 4.1 | Page 7

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.


Matrices A and B will be inverse of each other only if ______.


Construct a 2 × 3 matrix whose elements aij are given by :

(ii) aij = 2i − j


Construct a 2 × 3 matrix whose elements aij are given by :

(iv) aij =`(i+j)^2/2` 


Without using the concept of inverse of a matrix, find the matrix `[[x       y],[z       u]]` such that
`[[5     -7],[-2         3]][[x        y],[z         u]]=[[-16       -6],[7                   2]]`


Find the matrix A such that `[[1     1],[0       1]]A=[[3        3         5],[1       0          1]]`


Find the matrix A such that `A=[[1,2,3],[4,5,6]]=`  `[[-7,-8,-9],[2,4,6]]`


Find the matrix A such that `[[4],[1],[3]]  A=[[-4,8,4],[-1,2,1],[-3,6,3]]`


If A = `[(1, 1, 1),(0, 1, 3),(1, -2, 1)]`,find A-1

hence, solve the following system of equations

x + y + z = 6
y + 3z =11
x- 2y + z = 0


Find the inverse of the following matrix using elementary operations.

`"A" = [(1,2,-2), (-1,3,0),(0,-2,1)]`


Using elementary row transformation, find the inverse of the matrix

`[(2,-3,5),(3,2,-4),(1,1,-2)]`


A square matrix A is called idempotent if ____________.


Using elementary transformation, find the inverse of a matrix `[(-1,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the matrix A `= [(1,3),(2,7)],` using elementary row transformation.


`[("x" + 3, "z" + 4, 2"y" - 7),(4"x" + 6, a - 1, 0),("b" - 3, 3"b", "z"+ 2"c")] = [(0,6,3"y" - 2),(2"x", -3, 2"c" + 2),(2"b" + 4, -21,0)]` then find the values of a, b, c, x, y, and z respectively.


If A2 – A + I = O, then the inverse of A is ____________.


If `[(2 + "x", 3,4),(1,-1,2),("x", 1,-5)]` is singular matrix, ten x is ____________.


Value of k, for which A = `[("k",8),(4,2"k")]` is a singular matrix is:


Given that A is a non-singular matrix of order 3 such that A2 = 2A, then the value of |2A| is:


If A = `["a"_("ij")]` is a 2 x 3 matrix, such that `"a"_("ij") = ("-i" + 2"j")^2/5.` then a23 is ____________.


If A = `[a_ÿ]` is a square matrix of order n, then elements (entries) a11, a22,------ann are said to constitute the ------ of the matrix A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×