English

Using elementary row transformation, find the inverse of the matrix(2,-3,5),(3,2,-4),(1,1,-2) - Mathematics

Advertisements
Advertisements

Question

Using elementary row transformation, find the inverse of the matrix

`[(2,-3,5),(3,2,-4),(1,1,-2)]`

Sum

Solution

We have A =`[(2,-3,5),(3,2,-4),(1,1,-2)]`

A=IA `[(2,-3,5),(3,2,-4),(1,1,-2)]=[(1,0,0),(0,1,0),(1,0,0)]`A

R1 ↔ R3

`[(1,1,-2),(3,2,-4),(2,-3,5)]=[(0,0,1),(0,1,0),(1,0,0)]`A

R2 → R2 - 3R1,
R3 → R3 - 2R1

`[(1,1,-2),(0,-1,2),(0,-5,9)]=[(0,0,1),(0,1,-3),(1,0,-2)]`A

R2 → R1 +R2 ,
R3 → R3 - 5R2

`[(1,0,0),(0,-1,2),(0,0,-1)]=[(0,0,-2),(0,1,-3),(1,-5,13)]`A

R2 → - R2 ,
R3 → - R3

`[(1,0,0),(0,1,-2),(0,0,1)]=[(0,1,-2),(0,-1,3),(-1,5,-13)]`A

R2 → R2 + 2R3

`[(1,0,0),(0,1,0),(0,0,1)]=[(0,1,-2),(-2,9,-23),(-1,5,-13)]`A

We know, I = AA-1 

Therefore, inverse of A i.e. `"A"^-1 = [(0,1,-2),(-2,9,-23),(-1,5,-13)]`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/4/3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Matrices A and B will be inverse of each other only if ______.


Construct a 2 × 3 matrix whose elements aij are given by :

(i) aij = j


Construct a 2 × 3 matrix whose elements aij are given by :

(ii) aij = 2i − j


Construct a 2 × 3 matrix whose elements aij are given by :

(iv) aij =`(i+j)^2/2` 


Without using the concept of inverse of a matrix, find the matrix `[[x       y],[z       u]]` such that
`[[5     -7],[-2         3]][[x        y],[z         u]]=[[-16       -6],[7                   2]]`


Find the matrix A such that `[[1     1],[0       1]]A=[[3        3         5],[1       0          1]]`


Find the matrix A such that `A=[[1,2,3],[4,5,6]]=`  `[[-7,-8,-9],[2,4,6]]`


Find the matrix A such that `[[4],[1],[3]]  A=[[-4,8,4],[-1,2,1],[-3,6,3]]`


If A = `[(1, 1, 1),(0, 1, 3),(1, -2, 1)]`,find A-1

hence, solve the following system of equations

x + y + z = 6
y + 3z =11
x- 2y + z = 0


Find the inverse of the following matrix using elementary operations.

`"A" = [(1,2,-2), (-1,3,0),(0,-2,1)]`


A square matrix A is called idempotent if ____________.


Using elementary transformation, find the inverse of a matrix `[(-1,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the matrix A `= [(1,3),(2,7)],` using elementary row transformation.


If `[("x + y", 2"x + z"),("x - y", 2"z + w")] = [(4,7),(0,10)]` then the values of x, y, z and w respectively are ____________.


If A2 – A + I = O, then the inverse of A is ____________.


If `[(2 + "x", 3,4),(1,-1,2),("x", 1,-5)]` is singular matrix, ten x is ____________.


Given that A is a non-singular matrix of order 3 such that A2 = 2A, then the value of |2A| is:


If A = `["a"_("ij")]` is a 2 x 3 matrix, such that `"a"_("ij") = ("-i" + 2"j")^2/5.` then a23 is ____________.


If A = `[a_ÿ]` is a square matrix of order n, then elements (entries) a11, a22,------ann are said to constitute the ------ of the matrix A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×