हिंदी

A=`[[3 2 0],[1 4 0],[0 0 5]]`, Show That A2 − 7a + 10i3 = O - Mathematics

Advertisements
Advertisements

प्रश्न

`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0

योग

उत्तर

\[Given: \hspace{0.167em} A = \begin{bmatrix}3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5\end{bmatrix}\]
\[Here, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5\end{bmatrix}\begin{bmatrix}3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}9 + 2 + 0 & 6 + 8 + 0 & 0 + 0 + 0 \\ 3 + 4 + 0 & 2 + 16 + 0 & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 25\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}11 & 14 & 0 \\ 7 & 18 & 0 \\ 0 & 0 & 25\end{bmatrix}\]
\[\]
\[Now, \]
\[ A^2 - 7A + 10 I_3 \]
\[ \Rightarrow A^2 - 7A + 10 I_3 = \begin{bmatrix}11 & 14 & 0 \\ 7 & 18 & 0 \\ 0 & 0 & 25\end{bmatrix} - 7\begin{bmatrix}3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5\end{bmatrix} + 10\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow A^2 - 7A + 10 I_3 = \begin{bmatrix}11 & 14 & 0 \\ 7 & 18 & 0 \\ 0 & 0 & 25\end{bmatrix} - \begin{bmatrix}21 & 14 & 0 \\ 7 & 28 & 0 \\ 0 & 0 & 35\end{bmatrix} + \begin{bmatrix}10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10\end{bmatrix}\]
\[ \Rightarrow A^2 - 7A + 10 I_3 = \begin{bmatrix}11 - 21 + 10 & 14 - 14 + 0 & 0 - 0 + 0 \\ 7 - 7 + 0 & 18 - 28 + 10 & 0 - 0 + 0 \\ 0 - 0 + 0 & 0 - 0 + 0 & 25 - 35 + 10\end{bmatrix}\]
\[ \Rightarrow A^2 - 7A + 10 I_3 = \begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix} = 0\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 46 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated product.

`[(1),(2),(3)] [2,3,4]`


If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O

 

For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):

`A =-[[1             2         0],[-1        0           1]]`,`B=[[1       0],[-1        2],[0        3]]` and C= `[[1],[-1]]`


If [1 −1 x] `[[0       1           -1],[2           1             3],[1          1             1]]   [[0],[1],[1]]=`= 0, find x.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]


If


Solve the matrix equations:

`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`


Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`


If `A=[[0,0],[4,0]]` find `A^16`


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 

If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


Express the matrix \[A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.

 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

Write matrix A satisfying   ` A+[[2      3],[-1   4]] =[[3     6],[- 3     8]]`.


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If  \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these

 


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\] 


If  \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.


If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.


If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×