हिंदी

If A = [0110], then A2 is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.

विकल्प

  • `[(0, 1),(1, 0)]`

  • `[(1, 0),(1, 0)]`

  • `[(0, 1),(0,1)]`

  • `[(1, 0),(0, 1)]`

MCQ
रिक्त स्थान भरें

उत्तर

If A = `[(0, 1),(1, 0)]`, then A2 is equal to `[(1, 0),(0, 1)]`.

Explanation:

Given that A = `[(0, 1),(1, 0)]`

A2 = A . A

= `[(0, 1),(1, 0)] [(0, 1),(1, 0)]`

= `[(0 + 1, 0 + 0),(0 + 0, 1 + 0)]`

= `[(1, 0),(0, 1)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise [पृष्ठ ६०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise | Q 58 | पृष्ठ ६०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated product.

`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`


Compute the indicated products:

`[[a    b],[-b      a]][[a     -b],[b         a]]`


If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O

 

Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0


If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show  that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ CA ≠ O.

 

In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as

      Cost per contact

`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`

The number of contacts of each type made in two cities X and Y is given in matrix B as

       Telephone   House call    Letter

`B= [[    1000, 500,      5000],[3000,1000,     10000                ]]` 

Find the total amount spent by the group in the two cities X and Y.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (A + B)T = AT BT


If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT

 

If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?


If `[2     1       3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.


If AB = A and BA = B, where A and B are square matrices,  then


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2,   values of a and b are


If  \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C


A matrix which is not a square matrix is called a ______ matrix.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total money (in Rupees) collected by the school DPS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money (in Rs.) collected by schools CVC and KVS?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×