हिंदी

Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,1]]` and `C=[[4,2],[-3,2],[5,0]]`Verify That Ab = Ac Though B ≠ C, A ≠ O. - Mathematics

Advertisements
Advertisements

प्रश्न

Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ CA ≠ O.

 
योग

उत्तर

\[Here, \]

\[A = \begin{bmatrix}1 & 1 & 1 \\ 3 & 3 & 3\end{bmatrix}, B = \begin{bmatrix}3 & 1 \\ 5 & 2 \\ - 2 & 4\end{bmatrix} \text{and C} = \begin{bmatrix}4 & 2 \\ - 3 & 5 \\ 5 & 0\end{bmatrix}\]

\[Now, \]

\[AB = \begin{bmatrix}1 & 1 & 1 \\ 3 & 3 & 3\end{bmatrix}\begin{bmatrix}3 & 1 \\ 5 & 2 \\ - 2 & 4\end{bmatrix}\]

\[ \Rightarrow AB = \begin{bmatrix}3 + 5 - 2 & 1 + 2 + 4 \\ 9 + 15 - 6 & 3 + 6 + 12\end{bmatrix}\]

\[ \Rightarrow AB = \begin{bmatrix}6 & 7 \\ 18 & 21\end{bmatrix}\]

\[\]

\[AC = \begin{bmatrix}1 & 1 & 1 \\ 3 & 3 & 3\end{bmatrix}\begin{bmatrix}4 & 2 \\ - 3 & 5 \\ 5 & 0\end{bmatrix}\]

\[ \Rightarrow AC = \begin{bmatrix}4 - 3 + 5 & 2 + 5 + 0 \\ 12 - 9 + 15 & 6 + 15 + 0\end{bmatrix}\]

\[ \Rightarrow AC = \begin{bmatrix}6 & 7 \\ 18 & 21\end{bmatrix}\]

So, AB = AC though B ≠ C , A ≠ O.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 70 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the given values of x and y make the following pair of matrices equal?

`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`


Compute the indicated product.

`[(1),(2),(3)] [2,3,4]`


Compute the indicated products

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Show that AB ≠ BA in each of the following cases

`A=[[-1          1           0],[0          -1           1],[2                  3                4]]`  and  =B `[[1          2            3], [0          1           0],[1        1          0]]`


Show that AB ≠ BA in each of the following cases:

`A=[[1       3         0],[1        1          0],[4         1         0]]`And    B=`[[0      1          0],[1        0        0],[0           5          1]]`


Compute the products AB and BA whichever exists in each of the following cases:

`A= [[1      -2],[2              3]]` and  B=`[[1       2        3],[2         3         1]]`


Compute the products AB and BA whichever exists in each of the following cases:

`A=[[3     2],[-1     0],[-1      1]]` and `B= [[4         5        6],[0           1             2]]`


Compute the products AB and BA whichever exists in each of the following cases:

A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`

 


If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):

`A =-[[1             2         0],[-1        0           1]]`,`B=[[1       0],[-1        2],[0        3]]` and C= `[[1],[-1]]`


If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


If [1 −1 x] `[[0       1           -1],[2           1             3],[1          1             1]]   [[0],[1],[1]]=`= 0, find x.


\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.


If A=, find k such that A2 = kA − 2I2

 

If A=then find λ, μ so that A2 = λA + μI

 

If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


Give examples of matrices

A and B such that AB = O but BA ≠ O.


Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.

 

In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as

      Cost per contact

`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`

The number of contacts of each type made in two cities X and Y is given in matrix B as

       Telephone   House call    Letter

`B= [[    1000, 500,      5000],[3000,1000,     10000                ]]` 

Find the total amount spent by the group in the two cities X and Y.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


 If \[A = \begin{bmatrix}\sin \alpha & \cos \alpha \\ - \cos \alpha & \sin \alpha\end{bmatrix}\] , verify that AT A = I2.
 

If  \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.

 

 


Write matrix A satisfying   ` A+[[2      3],[-1   4]] =[[3     6],[- 3     8]]`.


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is 

Disclaimer: option (a) and (d) both are the same.

 

If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix


If A and B are square matrices of the same order, then (AB)′ = ______.


If A and B are two square matrices of the same order, then AB = BA.


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×