Advertisements
Advertisements
प्रश्न
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
विकल्प
A2 − B2
A2 − BA − AB − B2
A2 − B2 + BA − AB
A2 − BA + B2 + AB
उत्तर
(A + B)(A − B) = A2 − AB + BA − B2
Hence, the correct option is (c).
APPEARS IN
संबंधित प्रश्न
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Show that AB ≠ BA in each of the following cases:
`A= [[5 -1],[6 7]]`And B =`[[2 1],[3 4]]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Show that AB ≠ BA in each of the following cases:
`A=[[1 3 0],[1 1 0],[4 1 0]]`And B=`[[0 1 0],[1 0 0],[0 5 1]]`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A =-[[1 2 0],[-1 0 1]]`,`B=[[1 0],[-1 2],[0 3]]` and C= `[[1],[-1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If A=, find k such that A2 = kA − 2I2
If A=then find λ, μ so that A2 = λA + μI
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`
If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then show that `(A+B)^2=A^2+B^2`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ C, A ≠ O.
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}"Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
For a 2 × 2 matrix A = [aij] whose elements are given by
If AB = A and BA = B, where A and B are square matrices, then
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is
Disclaimer: option (a) and (d) both are the same.
Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.