Advertisements
Advertisements
प्रश्न
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
विकल्प
\begin{bmatrix}a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a\end{bmatrix}
\[\begin{bmatrix}a^n & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\]
\[\begin{bmatrix}a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n\end{bmatrix}\]
\[\begin{bmatrix}na & 0 & 0 \\ 0 & na & 0 \\ 0 & 0 & na\end{bmatrix}\]
उत्तर
\[\begin{bmatrix}a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n\end{bmatrix}\]
\[Here, \]
\[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix} = \begin{bmatrix}a^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & a^2\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}a^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & a^2\end{bmatrix}\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix} = \begin{bmatrix}a^3 & 0 & 0 \\ 0 & a^3 & 0 \\ 0 & 0 & a^3\end{bmatrix}\]
\[\]
This pattern is applicable on all natural numbers .
\[ \therefore A^n = \begin{bmatrix}a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find AB
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Compute the products AB and BA whichever exists in each of the following cases:
A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
If A = `[[1 1],[0 1]]` show that A2 = `[[1 2],[0 1]]` and A3 = `[[1 3],[0 1]]`
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If
If A=then find λ, μ so that A2 = λA + μI
`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
To promote making of toilets for women, an organisation tried to generate awarness through (i) house calls, (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:
(i) ₹50 (ii) ₹20 (iii) ₹40
The number of attempts made in three villages X, Y and Z are given below:
(i) (ii) (iii)
X 400 300 100
Y 300 250 75
Z 500 400 150
Find the total cost incurred by the organisation for three villages separately, using matrices.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
write AB.
If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
If \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\]
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
A matrix which is not a square matrix is called a ______ matrix.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.
If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3