Advertisements
Advertisements
प्रश्न
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
उत्तर
\[\left( i \right) LHS = \left( A + B \right)^2 \]
\[ = \left( A + B \right)\left( A + B \right)\]
\[ = A\left( A + B \right) + B\left( A + B \right)\]
\[ = A^2 + AB + BA + B^2\]
We know that a matrix does not have commutative property. So,
AB ≠ BA
Thus,
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find AB
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
If [1 1 x] `[[1 0 2],[0 2 1],[2 1 0]] [[1],[1],[1]]` = 0, find x.
If
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that
\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α} & \sqrt{2}\text{sin n α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin n α} \end{bmatrix}\] for all n ∈ N.
Give examples of matrices
A and B such that AB = O but BA ≠ O.
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
If A and B are square matrices of the same order, explain, why in general
(A + B) (A − B) ≠ A2 − B2
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
For any square matrix write whether AAT is symmetric or skew-symmetric.
If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
The number of possible matrices of order 3 × 3 with each entry 2 or 0 is
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.
A matrix which is not a square matrix is called a ______ matrix.
A square matrix where every element is unity is called an identity matrix.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total money (in Rupees) collected by the school DPS?
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money (in Rs.) collected by schools CVC and KVS?
If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3