Advertisements
Advertisements
प्रश्न
If
उत्तर
\[Given: \hspace{0.167em} A = \begin{bmatrix}1 & 0 \\ - 1 & 7\end{bmatrix}\]
\[\]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}1 & 0 \\ - 1 & 7\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 1 & 7\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}1 - 0 & 0 + 0 \\ - 1 - 7 & 0 + 49\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}1 & 0 \\ - 8 & 49\end{bmatrix}\]
\[ A^2 - 8A + kI = 0\]
\[ \Rightarrow \begin{bmatrix}1 & 0 \\ - 8 & 49\end{bmatrix} - 8\begin{bmatrix}1 & 0 \\ - 1 & 7\end{bmatrix} + k\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} = 0\]
\[ \Rightarrow \begin{bmatrix}1 & 0 \\ - 8 & 49\end{bmatrix} - \begin{bmatrix}8 & 0 \\ - 8 & 56\end{bmatrix} + \begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix} = 0\]
\[ \Rightarrow \begin{bmatrix}1 - 8 + k & 0 - 0 + 0 \\ - 8 + 8 + 0 & 49 - 56 + k\end{bmatrix} = 0\]
\[ \Rightarrow \begin{bmatrix}- 7 + k & 0 \\ 0 & - 7 + k\end{bmatrix} = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
\[\]
The corresponding elements of two equal matrices are equal .
\[ \therefore - 7 + k = 0 \]
\[ \Rightarrow k = 7 \]
\[\]
APPEARS IN
संबंधित प्रश्न
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Show that AB ≠ BA in each of the following cases:
`A=[[1 3 0],[1 1 0],[4 1 0]]`And B=`[[0 1 0],[1 0 0],[0 5 1]]`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
If A=, find k such that A2 = kA − 2I2
If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
If `A=[[0,0],[4,0]]` find `A^16`
`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + X = 0.
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?
If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\]
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
If A and B are square matrices of the same order, then (AB)′ = ______.
A square matrix where every element is unity is called an identity matrix.
Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be ______.