Advertisements
Advertisements
प्रश्न
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
उत्तर
\[\left( vi \right) A\begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6\end{bmatrix} = \begin{bmatrix}- 7 & - 8 & - 9 \\ 2 & 4 & 6 \\ 11 & 10 & 9\end{bmatrix}\]
\[Let A = \begin{bmatrix}x & a \\ y & b \\ z & c\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x & a \\ y & b \\ z & c\end{bmatrix}\begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6\end{bmatrix} = \begin{bmatrix}- 7 & - 8 & - 9 \\ 2 & 4 & 6 \\ 11 & 10 & 9\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x + 4a & 2x + 5a & 3x + 6a \\ y + 4b & 2y + 5b & 3y + 6b \\ z + 4c & 2z + 5c & 3z + 6c\end{bmatrix} = \begin{bmatrix}- 7 & - 8 & - 9 \\ 2 & 4 & 6 \\ 11 & 10 & 9\end{bmatrix}\]
By comparing the corresponding elements, we get
`x+4a=-7` and `2x+5a=-8`
`⇒a=-2` and `x=1`
\[Also, \]
`y+4b=2` and `2y+5b=4`
`⇒b=0` and `y=2`
\[And, \]
z + 4c = 11 and 2z + 5c = 10
`⇒ c= 4` and `z=-5`
\[ \therefore A = \begin{bmatrix}1 & - 2 \\ 2 & 0 \\ - 5 & 4\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Show that AB ≠ BA in each of the following cases:
`A= [[5 -1],[6 7]]`And B =`[[2 1],[3 4]]`
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
If A = `[[1 1],[0 1]]` show that A2 = `[[1 2],[0 1]]` and A3 = `[[1 3],[0 1]]`
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
If
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If [1 1 x] `[[1 0 2],[0 2 1],[2 1 0]] [[1],[1],[1]]` = 0, find x.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.
If
Solve the matrix equations:
`[1 2 1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`
If f (x) = x2 − 2x, find f (A), where A=
If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then show that `(A+B)^2=A^2+B^2`
`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
For any square matrix write whether AAT is symmetric or skew-symmetric.
If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2, values of a and b are
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.
If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3