हिंदी

Find the Matrix A Such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`

योग

उत्तर

\[\left( vi \right) A\begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6\end{bmatrix} = \begin{bmatrix}- 7 & - 8 & - 9 \\ 2 & 4 & 6 \\ 11 & 10 & 9\end{bmatrix}\]
\[Let A = \begin{bmatrix}x & a \\ y & b \\ z & c\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x & a \\ y & b \\ z & c\end{bmatrix}\begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6\end{bmatrix} = \begin{bmatrix}- 7 & - 8 & - 9 \\ 2 & 4 & 6 \\ 11 & 10 & 9\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x + 4a & 2x + 5a & 3x + 6a \\ y + 4b & 2y + 5b & 3y + 6b \\ z + 4c & 2z + 5c & 3z + 6c\end{bmatrix} = \begin{bmatrix}- 7 & - 8 & - 9 \\ 2 & 4 & 6 \\ 11 & 10 & 9\end{bmatrix}\]
By comparing the corresponding elements, we get
`x+4a=-7`  and  `2x+5a=-8`
`⇒a=-2` and `x=1`
\[Also, \]
`y+4b=2` and  `2y+5b=4`
`⇒b=0` and  `y=2`
\[And, \]
z + 4c = 11   and   2z + 5c = 10
`⇒ c= 4`   and  `z=-5`
\[ \therefore A = \begin{bmatrix}1 & - 2 \\ 2 & 0 \\ - 5 & 4\end{bmatrix}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 48.6 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Show that AB ≠ BA in each of the following cases:

`A= [[5    -1],[6        7]]`And B =`[[2       1],[3         4]]`


If A =  `[[4       2],[-1        1]]` 

, prove that (A − 2I) (A − 3I) = O

 

If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


Compute the elements a43 and a22 of the matrix:`A=[[0     1        0],[2      0        2],[0       3        2],[4        0       4]]` `[[2       -1],[-3           2],[4              3]]  [[0            1           -1                    2                     -2],[3       -3             4          -4                  0]]`

 


If [1 −1 x] `[[0       1           -1],[2           1             3],[1          1             1]]   [[0],[1],[1]]=`= 0, find x.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]


If


Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\]  is  root of the equation A2 − 12A − I = O


If [1 1 x] `[[1         0            2],[0           2         1],[2            1           0]] [[1],[1],[1]]` = 0, find x.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.


If 

 


Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


If f (x) = x2 − 2x, find f (A), where A=


If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`


`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3


Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show  that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 


For the matrices A and B, verify that (AB)T = BT AT, where
\[A = \begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}1 & 4 \\ 2 & 5\end{bmatrix}\]

 If \[A = \begin{bmatrix}\sin \alpha & \cos \alpha \\ - \cos \alpha & \sin \alpha\end{bmatrix}\] , verify that AT A = I2.
 

Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

Write matrix A satisfying   ` A+[[2      3],[-1   4]] =[[3     6],[- 3     8]]`.


For any square matrix write whether AAT is symmetric or skew-symmetric.


If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


If  \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2,   values of a and b are


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×