Advertisements
Advertisements
प्रश्न
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.
उत्तर
Given : A=`[[ 3,1],[-1,2]]`
`⇒A2= A A`
`⇒A^2=``[[ 3,1],[-1,2]]` `[[ 3,1],[-1,2]]`
`⇒A^2`=`[[9-1,3+2],[-3-2,-1+4]]`
`⇒A^2= ``[[8,5],[-5,3]]`
`A^2−5A+7I`
`⇒A^2−5A+7I=``[[8,5],[-5,3]]-5[[3,1],[-1,2]]+7[[1,0],[0,1]]`
`⇒A^2−5A+7I=` `[[8,5],[-5,3]]-[[15,5],[-5,10]]+[[7,0],[0,7]]`
`⇒A^2−5A+7I=` `[[8-15+7,5-5+0],[-5+5+0,3-10+7]]`
`⇒A^2−5A+7I=` `[[0,0],[0,0]]=0`
Hence proved.
Given: `A^2−5A+7I=0`
`⇒A^2=5A−7I` ...(1)
`⇒A^3=A(5A−7I)` (Multilpying by A on both sides)
`⇒A^3=5A^2−7AI`
`⇒A^3=5(5A−7I)−7A` [From eq. (1)]
`⇒A^3=25A−35I−7A`
`⇒A^3=18A−35I`
`⇒A^4=(18A−35I)`A (Multilpying by A on both sides)
`⇒A^4=18A^2−35A`
`⇒A^4=18(5A−7I)−35A` [From eq. (1)]
`⇒A^4=90A−126I−35A`
`⇒A^4=55A−126I`
`⇒A^4=55``[[3,1],[-1,2]]-126` `[[1,0],[0,1]]`
`⇒A^4= ``[[165,55],[-55,110]]-[[126,0],[0,126]]`
`⇒A^4=``[[165-126,55-0],[-55-0,110-126]]`
`⇒A4= ``[[39,55],[-55,-16]]`
APPEARS IN
संबंधित प्रश्न
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Show that AB ≠ BA in each of the following cases:
`A=[[1 3 0],[1 1 0],[4 1 0]]`And B=`[[0 1 0],[1 0 0],[0 5 1]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that
\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α} & \sqrt{2}\text{sin n α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin n α} \end{bmatrix}\] for all n ∈ N.
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}"Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
If \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.