हिंदी

If A= `[[1 2 0],[3 -4 5],[0 -1 3]]`Compute A2 − 4a + 3i3. - Mathematics

Advertisements
Advertisements

प्रश्न

If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.

योग

उत्तर

Given : A= `[[1, 2,0],[3,-4,5],[0,-1,3]]`

 

Now,

`A^2`=AA

`⇒A^2=` `[[1,2,0],[3,-4 ,5],[0,-1 ,3]]``[[1,2,0],[3,-4,5],[0,-1,3]]`

`⇒A^2=` `[[1+6+0,2-8-0,0+10+0],[3-12+0,6+16-5,0-20+15],[0-3+0,0+4-3,0-5+9 ]]`

`⇒A^2=` `[[7,-6,10],[-9,17,-5],[-3,1,4]]`

`A^2−4A+3I_3`

⇒`A^2−4A+3I_3`=`[[7,-6,10],[-9,17,-5],[-3,1,4]]-4``[[1,2,0],[3,-4,5],[0,-1,3]]+3[[1,0,0],[0,1,0],[0,0,1]]`

⇒`A^2−4A+3I_3`= `[[7,-6,10],[-9,17,-5],[-3,1,4]]-[[4,8,0],[12,-16,20],[0,-4,12]]+[[3,0,0],[0,3,0],[0,0,3]]`

⇒ `A^2−4A+3I_3`=`[[7-4+3        -6-8+0       10-0+0          10-0+0],[-9-12+0           17+16+3             -5-20+0],[-3-0+0                 1+4+0                 4-12+3]]`

⇒ `A^2−4A+3I_3`= `[[6,-14,10],[-21,36,-25],[-3,5,-5]]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 41 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated product.

`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


Show that AB ≠ BA in each of the following cases

`A=[[-1          1           0],[0          -1           1],[2                  3                4]]`  and  =B `[[1          2            3], [0          1           0],[1        1          0]]`


Compute the products AB and BA whichever exists in each of the following cases:

`A= [[1      -2],[2              3]]` and  B=`[[1       2        3],[2         3         1]]`


If A =  `[[4       2],[-1        1]]` 

, prove that (A − 2I) (A − 3I) = O

 

If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]


 If `[[2     3],[5      7]] [[1      -3],[-2       4]]-[[-4      6],[-9        x]]` find x.


If 

 


If A=then find λ, μ so that A2 = λA + μI

 

Solve the matrix equations:

[2x 3] `[[1       2],[-3      0]] , [[x],[8]]=0`


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0


Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`


If `A=[[0,0],[4,0]]` find `A^16`


If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.


Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as

      Cost per contact

`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`

The number of contacts of each type made in two cities X and Y is given in matrix B as

       Telephone   House call    Letter

`B= [[    1000, 500,      5000],[3000,1000,     10000                ]]` 

Find the total amount spent by the group in the two cities X and Y.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


 If \[A = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}, B = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\],find `(AB)^T`

 


For the matrices A and B, verify that (AB)T = BT AT, where
\[A = \begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}1 & 4 \\ 2 & 5\end{bmatrix}\]

If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.

 

If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


The number of possible matrices of order 3 × 3 with each entry 2 or 0 is 


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


A matrix which is not a square matrix is called a ______ matrix.


If A and B are square matrices of the same order, then (AB)′ = ______.


If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total money (in Rupees) collected by the school DPS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money (in Rs.) collected by schools CVC and KVS?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×