हिंदी

Express the Matrix a = ⎡ ⎢ ⎣ 4 2 − 1 3 5 7 1 − 2 1 ⎤ ⎥ ⎦ as the Sum of a Symmetric and a Skew-symmetric Matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

Express the matrix \[A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.
योग

उत्तर

\[Given: A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\]  

\[ A^T = \begin{bmatrix}4 & 3 & 1 \\ 2 & 5 & - 2 \\ - 1 & 7 & 1\end{bmatrix}\] 
\[Let X = \frac{1}{2}\left( A + A^T \right) = \frac{1}{2}\left( \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix} + \begin{bmatrix}4 & 3 & 1 \\ 2 & 5 & - 2 \\ - 1 & 7 & 1\end{bmatrix} \right) = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix}\] 
\[ X^T = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix}^T = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix} = X\] 

\[Let Y = \frac{1}{2}\left( A - A^T \right) = \frac{1}{2}\left( \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix} - \begin{bmatrix}4 & 3 & 1 \\ 2 & 5 & - 2 \\ - 1 & 7 & 1\end{bmatrix} \right) = \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix}\] 
\[ Y^T = \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix}^T = \begin{bmatrix}0 & \frac{1}{2} & 1 \\ \frac{- 1}{2} & 0 & \frac{- 9}{2} \\ - 1 & \frac{9}{2} & 0\end{bmatrix} = - \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix} = - Y\] 
Thus, X is a symmetric matrix and Y is a skew - symmetric matrix .
\[Now, \] 

\[X + Y = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix} + \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix} = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix} = A\]


shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.5 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.5 | Q 5 | पृष्ठ ६१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


Compute the indicated products:

`[[1     -2],[2     3]][[1         2        3],[-3    2      -1]]`


Show that AB ≠ BA in each of the following cases

`A=[[-1          1           0],[0          -1           1],[2                  3                4]]`  and  =B `[[1          2            3], [0          1           0],[1        1          0]]`


If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O

 

If A =

\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =

\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.


If A =`[[2     -3          -5],[-1             4           5],[1           -3       -4]]` and B =`[[2         -2            -4],[-1               3                  4],[1            2           -3]]`

, show that AB = A and BA = B.

 

Compute the elements a43 and a22 of the matrix:`A=[[0     1        0],[2      0        2],[0       3        2],[4        0       4]]` `[[2       -1],[-3           2],[4              3]]  [[0            1           -1                    2                     -2],[3       -3             4          -4                  0]]`

 


\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]   , Show that A2 = A.


 If `[[2     3],[5      7]] [[1      -3],[-2       4]]-[[-4      6],[-9        x]]` find x.


If 

 


Solve the matrix equations:

`[x1][[1,0],[-2,-3]][[x],[5]]=0`


Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0


Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


If the matrix \[A = \begin{bmatrix}5 & 2 & x \\ y & z & - 3 \\ 4 & t & - 7\end{bmatrix}\]  is a symmetric matrix, find xyz and t.
 

 


 If \[A = \begin{bmatrix}4 & 3 \\ 1 & 2\end{bmatrix} and B = \binom{ - 4}{ 3}\] 

write AB.

 

If  \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.

 


 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


If  \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If  \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals 

 


If  \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.


If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.


If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


If A and B are square matrices of the same order, then [k (A – B)]′ = ______.


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×