Advertisements
Advertisements
प्रश्न
उत्तर
\[Given: A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\]
\[ A^T = \begin{bmatrix}4 & 3 & 1 \\ 2 & 5 & - 2 \\ - 1 & 7 & 1\end{bmatrix}\]
\[Let X = \frac{1}{2}\left( A + A^T \right) = \frac{1}{2}\left( \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix} + \begin{bmatrix}4 & 3 & 1 \\ 2 & 5 & - 2 \\ - 1 & 7 & 1\end{bmatrix} \right) = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix}\]
\[ X^T = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix}^T = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix} = X\]
\[Let Y = \frac{1}{2}\left( A - A^T \right) = \frac{1}{2}\left( \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix} - \begin{bmatrix}4 & 3 & 1 \\ 2 & 5 & - 2 \\ - 1 & 7 & 1\end{bmatrix} \right) = \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix}\]
\[ Y^T = \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix}^T = \begin{bmatrix}0 & \frac{1}{2} & 1 \\ \frac{- 1}{2} & 0 & \frac{- 9}{2} \\ - 1 & \frac{9}{2} & 0\end{bmatrix} = - \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix} = - Y\]
Thus, X is a symmetric matrix and Y is a skew - symmetric matrix .
\[Now, \]
\[X + Y = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix} + \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix} = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix} = A\]
APPEARS IN
संबंधित प्रश्न
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
If
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
Solve the matrix equations:
`[1 2 1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
write AB.
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
If A and B are two matrices such n that AB = B and BA = A , `A^2 + B^2` is equal to
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3