हिंदी

For Two Matrices a and B, a = [ 2 1 3 4 1 0 ] , B = ⎡ ⎢ ⎣ 1 − 1 0 2 5 0 ⎤ ⎥ ⎦ (Ab)T = Bt At. - Mathematics

Advertisements
Advertisements

प्रश्न

 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 

योग

उत्तर

\[\left( i \right) \] 

\[ Given: A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix} \] 

\[ A^T = \begin{bmatrix}2 & 4 \\ 1 & 1 \\ 3 & 0\end{bmatrix}\] 

\[\] 

\[B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\] 

\[ B^T = \begin{bmatrix}1 & 0 & 5 \\ - 1 & 2 & 0\end{bmatrix}\] \[Now, \] 

\[AB = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}\begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix} \] 

\[ \Rightarrow AB = \begin{bmatrix}2 + 0 + 15 & - 2 + 2 + 0 \\ 4 + 0 + 0 & - 4 + 2 + 0\end{bmatrix}\] 

\[ \Rightarrow AB = \begin{bmatrix}17 & 0 \\ 4 & - 2\end{bmatrix}\] 

\[ \Rightarrow \left( AB \right)^T = \begin{bmatrix}17 & 4 \\ 0 & - 2\end{bmatrix} . . . \left( 1 \right)\] \[ B^T A^T = \begin{bmatrix}1 & 0 & 5 \\ - 1 & 2 & 0\end{bmatrix}\begin{bmatrix}2 & 4 \\ 1 & 1 \\ 3 & 0\end{bmatrix}\] 

\[ \Rightarrow B^T A^T = \begin{bmatrix}2 + 0 + 15 & 4 + 0 + 0 \\ - 2 + 2 + 0 & - 4 + 2 + 0\end{bmatrix}\] 

\[ \Rightarrow B^T A^T = \begin{bmatrix}17 & 4 \\ 0 & - 2\end{bmatrix} . . . \left( 2 \right)\] 

\[\] 

\[ \therefore \left( AB \right)^T = B^T A^T \left[ \text{From eqs} . (1) and (2) \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.4 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.4 | Q 6.1 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find BA


Compute the indicated product.

`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`


Compute the indicated products:

`[[a    b],[-b      a]][[a     -b],[b         a]]`


Show that AB ≠ BA in each of the following cases:

`A= [[5    -1],[6        7]]`And B =`[[2       1],[3         4]]`


Compute the products AB and BA whichever exists in each of the following cases:

`A= [[1      -2],[2              3]]` and  B=`[[1       2        3],[2         3         1]]`


Compute the products AB and BA whichever exists in each of the following cases:

A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`

 


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


Solve the matrix equations:

[2x 3] `[[1       2],[-3      0]] , [[x],[8]]=0`


If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000


There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?


In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]

The number of contacts of each type made in two cities X and Y is given in the matrix B as

\[\begin{array}"Telephone & House calls & Letters\end{array}\]

\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City   X \\ City Y\end{array}\]

Find the total amount spent by the party in the two cities.

What should one consider before casting his/her vote − party's promotional activity of their social activities?

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(A − B)T = AT − BT


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.


For the matrices A and B, verify that (AB)T = BT AT, where
\[A = \begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}1 & 4 \\ 2 & 5\end{bmatrix}\]

If  \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.

 


 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.


If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.


If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?


Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]

 


If AB = A and BA = B, where A and B are square matrices,  then


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If  \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\]  is such that A2 = I, then 

 


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


If matrix AB = O, then A = O or B = O or both A and B are null matrices.


If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×