हिंदी

If `A=[[0,-x],[X,0]],[[0,1],[1,0]]` and `X^2=-1,` Then Show that `(A+B)^2=A^2+B^2` - Mathematics

Advertisements
Advertisements

प्रश्न

If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`

योग

उत्तर

Given:\[A = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}, B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] and x2 = −1

To show: (A + B)2 = A2 + B2

LHS:

\[A + B = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix} + \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 + 0 & - x + 1 \\ x + 1 & 0 + 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\]

\[ \left( A + B \right)^2 = \begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 + \left( 1 - x \right)\left( 1 + x \right) & 0 + 0 \\ 0 + 0 & \left( x + 1 \right)\left( 1 - x \right) + 0\end{bmatrix}\]

\[ = \begin{bmatrix}1 - x^2 & 0 \\ 0 & 1 - x^2\end{bmatrix} . . . (1)\]

R. H. S

\[A = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\]

\[ A^2 = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 - x^2 & 0 + 0 \\ 0 + 0 & - x^2 + 0\end{bmatrix}\]

\[ = \begin{bmatrix}- x^2 & 0 \\ 0 & - x^2\end{bmatrix} . . . (2)\]

\[\]

\[ B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

\[ B^2 = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 + 1 & 0 + 0 \\ 0 + 0 & 1 + 0\end{bmatrix}\]

\[ = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} . . . (3)\]

\[\]

\[Adding (2) and (3), we get\]

\[ A^2 + B^2 = \begin{bmatrix}- x^2 & 0 \\ 0 & - x^2\end{bmatrix} + \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]

\[ = \begin{bmatrix}1 - x^2 & 0 \\ 0 & 1 - x^2\end{bmatrix} . . . (4)\]

Comparing (1) and (4), we get

(A + B)2 = A2 + B2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 51 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated product:

`[(a,b),(-b,a)][(a,-b),(b,a)]`


Compute the indicated product.

`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`


Evaluate the following:

`[[],[1  2  3],[]]` `[[1     0      2],[2       0         1],[0          1       2]]` `[[2],[4],[6]]`


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A =  `[[4       2],[-1        1]]` 

, prove that (A − 2I) (A − 3I) = O

 

If A =

\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =

\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

If


Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\]  is  root of the equation A2 − 12A − I = O


If A=then find λ, μ so that A2 = λA + μI

 

Solve the matrix equations:

`[x1][[1,0],[-2,-3]][[x],[5]]=0`


If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.


If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`


Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Give examples of matrices

A and B such that AB = O but BA ≠ O.


Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


Write matrix A satisfying   ` A+[[2      3],[-1   4]] =[[3     6],[- 3     8]]`.


If  \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.


What is the total number of 2 × 2 matrices with each entry 0 or 1?


For a 2 × 2 matrix A = [aij] whose elements are given by 

\[a_{ij} = \frac{i}{j}\] , write the value of a12.
 

Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals


If  \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\]  is such that A2 = I, then 

 


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y


A square matrix where every element is unity is called an identity matrix.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money collected by all three schools DPS, CVC, and KVS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×