Advertisements
Advertisements
प्रश्न
If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then show that `(A+B)^2=A^2+B^2`
उत्तर
Given:\[A = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}, B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] and x2 = −1
To show: (A + B)2 = A2 + B2
LHS:
\[A + B = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix} + \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 + 0 & - x + 1 \\ x + 1 & 0 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\]
\[ \left( A + B \right)^2 = \begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 + \left( 1 - x \right)\left( 1 + x \right) & 0 + 0 \\ 0 + 0 & \left( x + 1 \right)\left( 1 - x \right) + 0\end{bmatrix}\]
\[ = \begin{bmatrix}1 - x^2 & 0 \\ 0 & 1 - x^2\end{bmatrix} . . . (1)\]
R. H. S
\[A = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\]
\[ A^2 = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 - x^2 & 0 + 0 \\ 0 + 0 & - x^2 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}- x^2 & 0 \\ 0 & - x^2\end{bmatrix} . . . (2)\]
\[\]
\[ B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]
\[ B^2 = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 + 1 & 0 + 0 \\ 0 + 0 & 1 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} . . . (3)\]
\[\]
\[Adding (2) and (3), we get\]
\[ A^2 + B^2 = \begin{bmatrix}- x^2 & 0 \\ 0 & - x^2\end{bmatrix} + \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
\[ = \begin{bmatrix}1 - x^2 & 0 \\ 0 & 1 - x^2\end{bmatrix} . . . (4)\]
Comparing (1) and (4), we get
(A + B)2 = A2 + B2
APPEARS IN
संबंधित प्रश्न
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the indicated product.
`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.
If
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If A=then find λ, μ so that A2 = λA + μI
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Give examples of matrices
A and B such that AB = O but BA ≠ O.
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
What is the total number of 2 × 2 matrices with each entry 0 or 1?
For a 2 × 2 matrix A = [aij] whose elements are given by
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
A square matrix where every element is unity is called an identity matrix.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money collected by all three schools DPS, CVC, and KVS?
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?