Advertisements
Advertisements
प्रश्न
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
उत्तर
`[(a,b),(-b,a)][(a,-b),(b,a)]`
`[(a,b),(-b,a)][(a, -b),(b,a)]`
`=[(a(a) + b(b), a(-b)+ b(a)), (-b(a) + a(b), -b(-b) + a(a))]`
`= [(a^2+b^2, -ab + ab), (-ab+ab, b^2 + a^2)] = [(a^2+b^2, 0),(0, a^2+ b^2)]`
APPEARS IN
संबंधित प्रश्न
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the indicated product.
`[(1),(2),(3)] [2,3,4]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
If A = `[[1 1],[0 1]]` show that A2 = `[[1 2],[0 1]]` and A3 = `[[1 3],[0 1]]`
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that
\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α} & \sqrt{2}\text{sin n α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin n α} \end{bmatrix}\] for all n ∈ N.
Give examples of matrices
A and B such that AB = O but BA ≠ O.
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
To promote making of toilets for women, an organisation tried to generate awarness through (i) house calls, (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:
(i) ₹50 (ii) ₹20 (iii) ₹40
The number of attempts made in three villages X, Y and Z are given below:
(i) (ii) (iii)
X 400 300 100
Y 300 250 75
Z 500 400 150
Find the total cost incurred by the organisation for three villages separately, using matrices.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2, values of a and b are
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.
Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
If A and B are square matrices of the same order, then (AB)′ = ______.
If A and B are two square matrices of the same order, then AB = BA.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total money (in Rupees) collected by the school DPS?
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.
If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.