Advertisements
Advertisements
प्रश्न
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
उत्तर
\[PQ = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\begin{bmatrix}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{bmatrix}\]
\[ = \begin{bmatrix}xa + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + yb + 0 & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + zc\end{bmatrix}\]
\[ = \begin{bmatrix}xa & 0 & 0 \\ 0 & yb & 0 \\ 0 & 0 & zc\end{bmatrix} . . . (4)\]\[QP = \begin{bmatrix}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{bmatrix}\begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\]
\[ = \begin{bmatrix}ax + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + by + 0 & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + cz\end{bmatrix}\]
\[ = \begin{bmatrix}xa & 0 & 0 \\ 0 & yb & 0 \\ 0 & 0 & zc\end{bmatrix} . . . (5)\]\[PQ = \begin{bmatrix}xa & 0 & 0 \\ 0 & yb & 0 \\ 0 & 0 & zc\end{bmatrix} = QP\]
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated products
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
If A = `[[2 -1],[3 2]]` and B = `[[0 4],[-1 7]]`find 3A2 − 2B + I
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A =-[[1 2 0],[-1 0 1]]`,`B=[[1 0],[-1 2],[0 3]]` and C= `[[1],[-1]]`
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If f (x) = x2 − 2x, find f (A), where A=
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
Give examples of matrices
A and B such that AB ≠ BA
Give examples of matrices
A and B such that AB = O but BA ≠ O.
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
What is the total number of 2 × 2 matrices with each entry 0 or 1?
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
A matrix which is not a square matrix is called a ______ matrix.
A square matrix where every element is unity is called an identity matrix.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money collected by all three schools DPS, CVC, and KVS?