Advertisements
Advertisements
प्रश्न
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
उत्तर
Consider the matrix,
\[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] \[\text { adj }\left( A \right) = C^T\] Where, C is cofactor matrix.
\[C = \begin{pmatrix}\cos \alpha & - \sin\alpha & 0 \\ \sin \alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}, \]
\[\text { Adj }\left( A \right) = C^T = \begin{pmatrix}cos\alpha & sin\alpha & 0 \\ - sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}\]
Now,
\[A . \text { Adj }\left( A \right) = \begin{pmatrix}cos\alpha & - sin\alpha & 0 \\ sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}cos\alpha & sin\alpha & 0 \\ - sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}\]
\[ = \begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix} . . . . . (1)\]
\[\text { Adj }\left( A \right) . A = \begin{pmatrix}cos\alpha & sin\alpha & 0 \\ - sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}cos\alpha & - sin\alpha & 0 \\ sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}\]
\[ = \begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix} . . . . . (2)\]
\[\left| A \right| = \begin{vmatrix}cos\alpha & - sin\alpha & 0 \\ sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{vmatrix}\]
\[ = cos\alpha\left( cos\alpha - 0 \right) + sin\alpha\left( sin\alpha - 0 \right) + 0\]
\[ = 1 . . . . . (3)\]
APPEARS IN
संबंधित प्रश्न
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If [1 1 x] `[[1 0 2],[0 2 1],[2 1 0]] [[1],[1],[1]]` = 0, find x.
If A=, find k such that A2 = kA − 2I2
If A=then find λ, μ so that A2 = λA + μI
Find the value of x for which the matrix product`[[2 0 7],[0 1 0],[1 -2 1]]` `[[-x 14x 7x],[0 1 0],[x -4x -2x]]`equal an identity matrix.
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ C, A ≠ O.
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
A matrix which is not a square matrix is called a ______ matrix.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total money (in Rupees) collected by the school DPS?
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.
Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be ______.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3