हिंदी

For the Following Matrices Verify the Distributivity of Matrix Multiplication Over Matrix Addition I.E. A (B + C) = Ab + Ac: `A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]` - Mathematics

Advertisements
Advertisements

प्रश्न

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`

योग

उत्तर

LaTeX

\[\left( ii \right) \]
\[A\left( B + C \right) = AB + AC\]
\[ \Rightarrow \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\left( \begin{bmatrix}0 & 1 \\ 1 & 1\end{bmatrix} + \begin{bmatrix}1 & - 1 \\ 0 & 1\end{bmatrix} \right) = \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}0 & 1 \\ 1 & 1\end{bmatrix} + \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}1 & - 1 \\ 0 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}0 + 1 & 1 - 1 \\ 1 + 0 & 1 + 1\end{bmatrix} = \begin{bmatrix}0 - 1 & 2 - 1 \\ 0 + 1 & 1 + 1 \\ 0 + 2 & - 1 + 2\end{bmatrix} + \begin{bmatrix}2 - 0 & - 2 - 1 \\ 1 + 0 & - 1 + 1 \\ - 1 + 0 & 1 + 2\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}1 & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}- 1 & 1 \\ 1 & 2 \\ 2 & 1\end{bmatrix} + \begin{bmatrix}2 & - 3 \\ 1 & 0 \\ - 1 & 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2 - 1 & 0 - 2 \\ 1 + 1 & 0 + 2 \\ - 1 + 2 & 0 + 4\end{bmatrix} = \begin{bmatrix}- 1 + 2 & 1 - 3 \\ 1 + 1 & 2 + 0 \\ 2 - 1 & 1 + 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & - 2 \\ 2 & 2 \\ 1 & 4\end{bmatrix} = \begin{bmatrix}1 & - 2 \\ 2 & 2 \\ 1 & 4\end{bmatrix}\]
\[ \therefore LHS = RHS\]
Hence proved .
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 17.2 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the given values of x and y make the following pair of matrices equal?

`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`


Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find BA


Compute the indicated product.

`[(1),(2),(3)] [2,3,4]`


Evaluate the following:

`[[],[1  2  3],[]]` `[[1     0      2],[2       0         1],[0          1       2]]` `[[2],[4],[6]]`


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


If A =`[[2     -3          -5],[-1             4           5],[1           -3       -4]]` and B =`[[2         -2            -4],[-1               3                  4],[1            2           -3]]`

, show that AB = A and BA = B.

 

For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):

`A =-[[1             2         0],[-1        0           1]]`,`B=[[1       0],[-1        2],[0        3]]` and C= `[[1],[-1]]`


For the following matrices verify the associativity of matrix multiplication i.e. (ABC = A(BC):

`A=[[4       2        3],[1       1          2],[3         0          1]]`=`B=[[1        -1          1],[0         1            2],[2           -1          1]]` and  `C= [[1       2       -1],[3       0         1],[0         0         1]]` 


If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.


If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0


Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


Give examples of matrices

A and B such that AB = O but BA ≠ O.


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]

The number of contacts of each type made in two cities X and Y is given in the matrix B as

\[\begin{array}Telephone & House calls & Letters\end{array}\]

\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City   X \\ City Y\end{array}\]

Find the total amount spent by the party in the two cities.

What should one consider before casting his/her vote − party's promotional activity of their social activities?

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (A + B)T = AT BT


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(A − B)T = AT − BT


If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT

 

Express the matrix \[A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.

 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to 


If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y


If A and B are two square matrices of the same order, then AB = BA.


If A, B and C are square matrices of same order, then AB = AC always implies that B = C


If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal


If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×