हिंदी

If A = 1 π [ sin − 1 ( p i x ) t a n − 1 ( x π ) sin − 1 ( x π ) cot − 1 ( p i x ) ] , B = 1 π [ − cos − 1 ( p i x ) tan − 1 ( x π ) sin − 1 ( x π ) − tan − 1 ( p i x ) ] A − B is equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \frac{1}{\pi}\begin{bmatrix}\sin^{- 1} \left( \ pix \right) & \ tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & \cot^{- 1} \left( \ pix \right)\end{bmatrix}, B = \frac{1}{\pi}\begin{bmatrix}- \cos^{- 1} \left( \ pix \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & - \tan^{- 1} \left( \ pix \right)\end{bmatrix}\]

A − B is equal to

विकल्प

  • I

  • 0

  • 2I

  • `1/2 I`

MCQ

उत्तर

Given: 

\[A = \frac{1}{\pi}\begin{bmatrix}\sin^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & \cot^{- 1} \left( \pi x \right)\end{bmatrix}, B = \frac{1}{\pi}\begin{bmatrix}- \cos^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & - \tan^{- 1} \left( \pi x \right)\end{bmatrix}\]

\[A - B = \frac{1}{\pi}\begin{bmatrix}\sin^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & \cot^{- 1} \left( \pi x \right)\end{bmatrix} - \frac{1}{\pi}\begin{bmatrix}- \cos^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & - \tan^{- 1} \left( \pi x \right)\end{bmatrix}\] 

\[ = \frac{1}{\pi}\left( \begin{bmatrix}\sin^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \ sin^{- 1} \left( \frac{x}{\pi} \right) & \ cot^{- 1} \left( \pi x \right)\end{bmatrix} + \begin{bmatrix}\cos^{- 1} \left( \pi x \right) & - \tan^{- 1} \left( \frac{x}{\pi} \right) \\ - \sin^{- 1} \left( \frac{x}{\pi} \right) & \tan^{- 1} \left( \pi x \right)\end{bmatrix} \right)\] 

\[ = \frac{1}{\pi}\begin{bmatrix}\sin^{- 1} \left( \pi x \right) + \cos^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) - \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) - \sin^{- 1} \left( \frac{x}{\pi} \right) \& \cot^{- 1} \left( \pi x \right) + \tan^{- 1} \left( \pi x \right)\end{bmatrix}\] 

\[ = \frac{1}{\pi}\begin{bmatrix}\frac{\pi}{2} & 0 \\ 0 & \frac{\pi}{2}\end{bmatrix} \left( \because \sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2}  \text{ and }   \cot^{- 1} x + \tan^{- 1} x = \frac{\pi}{2} \right)\] 

\[ = \frac{1}{\pi} \times \frac{\pi}{2}\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] 

\[ = \frac{1}{2}I\]

Hence, the correct option is (d).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.7 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.7 | Q 41 | पृष्ठ ६९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

if `2[[3,4],[5,x]]+[[1,y],[0,1]]=[[7,0],[10,5]]` , find (xy).


If `[[x-y,z],[2x-y,w]]=[[-1,4],[0,5]]` find the value of x+y.


Find the values of abc and d from the following equations:`[[2a + b,a-2b],[5c-d,4c + 3d ]]`= `[[4,- 3],[11,24]]`

 


`If [[x,3x- y],[2x+z,3y -w ]]=[[3,2],[4,7]]` find x,y,z,w


`If [[x-y,z],[2x-y,w]]=[[-1,4],[0,5]]`Find X,Y,Z,W.


`If [[x + 3 , z + 4 ,     2y-7 ],[4x + 6,a-1,0 ],[b-3,3b,z + 2c ]]= [[0,6,3y-2],[2x,-3,2c-2],[2b + 4,-21,0]]`Obtain the values of abcxy and z.

 


For what values of x and y are the following matrices equal?

`A=[[2x+1   2y],[0              y^2 - 5y]]``B=[[x + 3      y^2 +2],[0        -6]]`


For what values of a and b if A = B, where

`A = [[a + 4        3b],[8        -6]]   B = [[2a +2              b^2+2],[8                    b^2  - 5b]]`

Disclaimer: There is a misprint in the question, b2 − 5should be written instead of b2 − 56.


If  \[\begin{bmatrix}x + 3 & 4 \\ y - 4 & x + y\end{bmatrix} = \begin{bmatrix}5 & 4 \\ 3 & 9\end{bmatrix}\] , find x and y


Find the value of y, if \[\begin{bmatrix}x - y & 2 \\ x & 5\end{bmatrix} = \begin{bmatrix}2 & 2 \\ 3 & 5\end{bmatrix}\]


if  \[\begin{bmatrix}2x + y & 3y \\ 0 & 4\end{bmatrix} = \begin{bmatrix}6 & 0 \\ 6 & 4\end{bmatrix}\]  , then find x.


Which of the given values of x and y make the following pairs of matrices equal? \[\begin{bmatrix}3x + 7 & 5 \\ y + 1 & 2 - 3x\end{bmatrix}, \begin{bmatrix}0 & y - 2 \\ 8 & 4\end{bmatrix}\] 


If matrix  \[A = \left[ a_{ij} \right]_{2 \times 2}\] where 

\[a_{ij} = \begin{cases}1 & , if i \neq j \\ 0 & , if i = j\end{cases}\] 

 


If A `= [(0,-1,2),(1,0,3),(-2,-3,0)],` then A + 2AT equals


On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.).

Based on the information given above, answer the following questions:

  • The equations in terms x and y are ____________.

On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.)

Based on the information given above, answer the following questions:

  • The number of children who were given some money by Seema, is ____________.

On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.)

Based on the information given above, answer the following questions:

  • How much amount is given to each child by Seema?

On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.)

Based on the information given above, answer the following questions:

  • How much amount Seema spends in distributing the money to all the students of the Orphanage?

Two matrices A = [aÿ] and B = [bÿ] are said to be equal if.


What is the value of a, b, c and 'd' from the following equation?

`[(2a + b, a - 2b),(5c - d, 4c + 3d)] = [(4, -3),(11, 24)]`


If A = `[(cos a, - sin a),(sin a, cos a)]`, then A+ A1 = l, if the value of a is:


Choose the correct answer in the following questions

If A = `[(alpha, beta),(y, - a)]` is such that A2 = I, then


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×