English

If A = 1 π [ sin − 1 ( p i x ) t a n − 1 ( x π ) sin − 1 ( x π ) cot − 1 ( p i x ) ] , B = 1 π [ − cos − 1 ( p i x ) tan − 1 ( x π ) sin − 1 ( x π ) − tan − 1 ( p i x ) ] A − B is equal to - Mathematics

Advertisements
Advertisements

Question

If \[A = \frac{1}{\pi}\begin{bmatrix}\sin^{- 1} \left( \ pix \right) & \ tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & \cot^{- 1} \left( \ pix \right)\end{bmatrix}, B = \frac{1}{\pi}\begin{bmatrix}- \cos^{- 1} \left( \ pix \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & - \tan^{- 1} \left( \ pix \right)\end{bmatrix}\]

A − B is equal to

Options

  • I

  • 0

  • 2I

  • `1/2 I`

MCQ

Solution

Given: 

\[A = \frac{1}{\pi}\begin{bmatrix}\sin^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & \cot^{- 1} \left( \pi x \right)\end{bmatrix}, B = \frac{1}{\pi}\begin{bmatrix}- \cos^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & - \tan^{- 1} \left( \pi x \right)\end{bmatrix}\]

\[A - B = \frac{1}{\pi}\begin{bmatrix}\sin^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & \cot^{- 1} \left( \pi x \right)\end{bmatrix} - \frac{1}{\pi}\begin{bmatrix}- \cos^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & - \tan^{- 1} \left( \pi x \right)\end{bmatrix}\] 

\[ = \frac{1}{\pi}\left( \begin{bmatrix}\sin^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \ sin^{- 1} \left( \frac{x}{\pi} \right) & \ cot^{- 1} \left( \pi x \right)\end{bmatrix} + \begin{bmatrix}\cos^{- 1} \left( \pi x \right) & - \tan^{- 1} \left( \frac{x}{\pi} \right) \\ - \sin^{- 1} \left( \frac{x}{\pi} \right) & \tan^{- 1} \left( \pi x \right)\end{bmatrix} \right)\] 

\[ = \frac{1}{\pi}\begin{bmatrix}\sin^{- 1} \left( \pi x \right) + \cos^{- 1} \left( \pi x \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) - \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) - \sin^{- 1} \left( \frac{x}{\pi} \right) \& \cot^{- 1} \left( \pi x \right) + \tan^{- 1} \left( \pi x \right)\end{bmatrix}\] 

\[ = \frac{1}{\pi}\begin{bmatrix}\frac{\pi}{2} & 0 \\ 0 & \frac{\pi}{2}\end{bmatrix} \left( \because \sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2}  \text{ and }   \cot^{- 1} x + \tan^{- 1} x = \frac{\pi}{2} \right)\] 

\[ = \frac{1}{\pi} \times \frac{\pi}{2}\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] 

\[ = \frac{1}{2}I\]

Hence, the correct option is (d).

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.7 [Page 69]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.7 | Q 41 | Page 69

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If `[[x-y,z],[2x-y,w]]=[[-1,4],[0,5]]` find the value of x+y.


If A= `[(cos alpha, -sin alpha), (sin alpha, cos alpha)]` then A + A' = I then the value of α is  ______.


Find xya and b if

`[[2x-3y,a-b,3],[1,x+4y,3a+4b]]`=`[[1,-2,3],[1,6,29]]`


Find the values of abc and d from the following equations:`[[2a + b,a-2b],[5c-d,4c + 3d ]]`= `[[4,- 3],[11,24]]`

 


Find xy and z so that A = B, where`A= [[x-2,3,2x],[18z,y+2,6x]],``b=[[y,z,6],[6y,x,2y]]`


`If [[x + 3 , z + 4 ,     2y-7 ],[4x + 6,a-1,0 ],[b-3,3b,z + 2c ]]= [[0,6,3y-2],[2x,-3,2c-2],[2b + 4,-21,0]]`Obtain the values of abcxy and z.

 


`If [[2x +1    5x],[0     y^2 +1]]``= [[x+3   10],[0      26 ]]`, find the value of (x + y).


`If [[xy          4],[z+6     x+y ]]``=[[8     w],[0     6]]`, then find the values of X,Y,Z and W . 


For what values of x and y are the following matrices equal?

`A=[[2x+1   2y],[0              y^2 - 5y]]``B=[[x + 3      y^2 +2],[0        -6]]`


Find the values of x and y if

`[[X + 10,Y^2 + 2Y],[0, -4]]`=`[[3x +4,3],[0,y^2-5y]]`


If  \[\begin{bmatrix}x + 3 & 4 \\ y - 4 & x + y\end{bmatrix} = \begin{bmatrix}5 & 4 \\ 3 & 9\end{bmatrix}\] , find x and y


If matrix A = [1 2 3], write AAT.


If \[A = \begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\] , find A + AT.


If \[\begin{bmatrix}a + b & 2 \\ 5 & b\end{bmatrix} = \begin{bmatrix}6 & 5 \\ 2 & 2\end{bmatrix}\] , then find a.


Which of the given values of x and y make the following pairs of matrices equal? \[\begin{bmatrix}3x + 7 & 5 \\ y + 1 & 2 - 3x\end{bmatrix}, \begin{bmatrix}0 & y - 2 \\ 8 & 4\end{bmatrix}\] 


If matrix  \[A = \left[ a_{ij} \right]_{2 \times 2}\] where 

\[a_{ij} = \begin{cases}1 & , if i \neq j \\ 0 & , if i = j\end{cases}\] 

 


If A = `[[3,1] , [7,5]]`, find the values of x and y such that A2 + xI2 = yA.


On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.).

Based on the information given above, answer the following questions:

  • The equations in terms x and y are ____________.

On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.)

Based on the information given above, answer the following questions:

  • The number of children who were given some money by Seema, is ____________.

On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.)

Based on the information given above, answer the following questions:

  • How much amount is given to each child by Seema?

Two matrices A = [aÿ] and B = [bÿ] are said to be equal if.


If A = `[(cos a, - sin a),(sin a, cos a)]`, then A+ A1 = l, if the value of a is:


Choose the correct answer in the following questions

If A = `[(alpha, beta),(y, - a)]` is such that A2 = I, then


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×