Advertisements
Advertisements
Question
If A = `[[3,1] , [7,5]]`, find the values of x and y such that A2 + xI2 = yA.
Solution
Given that: A = `[[3,1] , [7,5]]`
Now, A2 = A.A = `[[3,1] , [7,5]] [[3,1] , [7,5]]`
= `[[9 +7, 3+5], [ 21 + 35, 7 + 25]]`
= `[[16,8], [56,32]]`
∴ A2 + xI2 = yA
`[[16,8], [56,32]] + x [[ 1,0], [0,1]] = y [[3,1] ,[7,5]]`
`[[16 +x ,8],[ 56 , 32+x]] = [[3y, y],[7y,5y]]`
Comparing the corresponding entries of equal matrices, we have ⇒ y = 8
and 16 + x = 3y
∴ x = 3 x 8 - 16
= 24 - 16
= 8
Hence, the required values of x is 8 and y is 8.
APPEARS IN
RELATED QUESTIONS
If `[[x-y,z],[2x-y,w]]=[[-1,4],[0,5]]` find the value of x+y.
If A= `[(cos alpha, -sin alpha), (sin alpha, cos alpha)]` then A + A' = I then the value of α is ______.
Find the values of a, b, c and d from the following equations:`[[2a + b,a-2b],[5c-d,4c + 3d ]]`= `[[4,- 3],[11,24]]`
Find x, y and z so that A = B, where`A= [[x-2,3,2x],[18z,y+2,6x]],``b=[[y,z,6],[6y,x,2y]]`
`If [[x-y,z],[2x-y,w]]=[[-1,4],[0,5]]`Find X,Y,Z,W.
`If [[2x +1 5x],[0 y^2 +1]]``= [[x+3 10],[0 26 ]]`, find the value of (x + y).
Given an example of
a row matrix which is also a column matrix,
Find the values of x and y if
`[[X + 10,Y^2 + 2Y],[0, -4]]`=`[[3x +4,3],[0,y^2-5y]]`
For what values of a and b if A = B, where
`A = [[a + 4 3b],[8 -6]] B = [[2a +2 b^2+2],[8 b^2 - 5b]]`
Disclaimer: There is a misprint in the question, b2 − 5b should be written instead of b2 − 56.
If \[\begin{bmatrix}x + 3 & 4 \\ y - 4 & x + y\end{bmatrix} = \begin{bmatrix}5 & 4 \\ 3 & 9\end{bmatrix}\] , find x and y
Find the value of x from the following: `[[2x - y 5],[ 3 y ]]` = `[[6 5 ],[3 - 2\]]`
Find the value of x, if \[\begin{bmatrix}3x + y & - y \\ 2y - x & 3\end{bmatrix} = \begin{bmatrix}1 & 2 \\ - 5 & 3\end{bmatrix}\]
Find the value of y, if \[\begin{bmatrix}x - y & 2 \\ x & 5\end{bmatrix} = \begin{bmatrix}2 & 2 \\ 3 & 5\end{bmatrix}\]
if \[\begin{bmatrix}2x + y & 3y \\ 0 & 4\end{bmatrix} = \begin{bmatrix}6 & 0 \\ 6 & 4\end{bmatrix}\] , then find x.
If \[A = \begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\] , find A + AT.
If \[\begin{bmatrix}a + b & 2 \\ 5 & b\end{bmatrix} = \begin{bmatrix}6 & 5 \\ 2 & 2\end{bmatrix}\] , then find a.
If A `= [(0,-1,2),(1,0,3),(-2,-3,0)],` then A + 2AT equals
On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.).
Based on the information given above, answer the following questions:
- The equations in terms x and y are ____________.
On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.).
Based on the information given above, answer the following questions:
- Which of the following matrix equations represent the information given above?
On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.)
Based on the information given above, answer the following questions:
- The number of children who were given some money by Seema, is ____________.
On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.)
Based on the information given above, answer the following questions:
- How much amount Seema spends in distributing the money to all the students of the Orphanage?
What is the value of a, b, c and 'd' from the following equation?
`[(2a + b, a - 2b),(5c - d, 4c + 3d)] = [(4, -3),(11, 24)]`
If A = `[(cos a, - sin a),(sin a, cos a)]`, then A+ A1 = l, if the value of a is: