Advertisements
Advertisements
Question
Find the value of x from the following: `[[2x - y 5],[ 3 y ]]` = `[[6 5 ],[3 - 2\]]`
Solution
The corresponding elements of two equal matrices are equal.
\[Given: \begin{bmatrix}2x - y & 5 \\ 3 & y\end{bmatrix} = \begin{bmatrix}6 & 5 \\ 3 & - 2\end{bmatrix}\]
\[2x - y = 6 . . . \left( 1 \right)\]
\[y = - 2\]
Putting the value of y in eq . (1)
\[2x - \left( - 2 \right) = 6\]
\[ \Rightarrow 2x + 2 = 6\]
\[ \Rightarrow 2x = 6 - 2\]
\[ \Rightarrow 2x = 4\]
\[ \Rightarrow x = \frac{4}{2} = 2\]
APPEARS IN
RELATED QUESTIONS
if `2[[3,4],[5,x]]+[[1,y],[0,1]]=[[7,0],[10,5]]` , find (x−y).
If `[[x-y,z],[2x-y,w]]=[[-1,4],[0,5]]` find the value of x+y.
If A= `[(cos alpha, -sin alpha), (sin alpha, cos alpha)]` then A + A' = I then the value of α is ______.
Find the values of a, b, c and d from the following equations:`[[2a + b,a-2b],[5c-d,4c + 3d ]]`= `[[4,- 3],[11,24]]`
Find x, y and z so that A = B, where`A= [[x-2,3,2x],[18z,y+2,6x]],``b=[[y,z,6],[6y,x,2y]]`
`If [[x + 3 , z + 4 , 2y-7 ],[4x + 6,a-1,0 ],[b-3,3b,z + 2c ]]= [[0,6,3y-2],[2x,-3,2c-2],[2b + 4,-21,0]]`Obtain the values of a, b, c, x, y and z.
`If [[2x +1 5x],[0 y^2 +1]]``= [[x+3 10],[0 26 ]]`, find the value of (x + y).
`If [[xy 4],[z+6 x+y ]]``=[[8 w],[0 6]]`, then find the values of X,Y,Z and W .
Find the values of x and y if
`[[X + 10,Y^2 + 2Y],[0, -4]]`=`[[3x +4,3],[0,y^2-5y]]`
For what values of a and b if A = B, where
`A = [[a + 4 3b],[8 -6]] B = [[2a +2 b^2+2],[8 b^2 - 5b]]`
Disclaimer: There is a misprint in the question, b2 − 5b should be written instead of b2 − 56.
If \[\begin{bmatrix}x + 3 & 4 \\ y - 4 & x + y\end{bmatrix} = \begin{bmatrix}5 & 4 \\ 3 & 9\end{bmatrix}\] , find x and y
Find the value of y, if \[\begin{bmatrix}x - y & 2 \\ x & 5\end{bmatrix} = \begin{bmatrix}2 & 2 \\ 3 & 5\end{bmatrix}\]
If matrix A = [1 2 3], write AAT.
if \[\begin{bmatrix}2x + y & 3y \\ 0 & 4\end{bmatrix} = \begin{bmatrix}6 & 0 \\ 6 & 4\end{bmatrix}\] , then find x.
If \[\begin{bmatrix}a + b & 2 \\ 5 & b\end{bmatrix} = \begin{bmatrix}6 & 5 \\ 2 & 2\end{bmatrix}\] , then find a.
If A = `[[3,1] , [7,5]]`, find the values of x and y such that A2 + xI2 = yA.
If A `= [(0,-1,2),(1,0,3),(-2,-3,0)],` then A + 2AT equals
On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.).
Based on the information given above, answer the following questions:
- The equations in terms x and y are ____________.
On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.)
Based on the information given above, answer the following questions:
- How much amount is given to each child by Seema?
On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.)
Based on the information given above, answer the following questions:
- How much amount Seema spends in distributing the money to all the students of the Orphanage?
Two matrices A = [aÿ] and B = [bÿ] are said to be equal if.
If A = `[(cos a, - sin a),(sin a, cos a)]`, then A+ A1 = l, if the value of a is:
Choose the correct answer in the following questions
If A = `[(alpha, beta),(y, - a)]` is such that A2 = I, then