English

Find X, Y, a and B If `[[2x-3y,A-b,3],[1,X+4y,3a+4b]]`=`[[1,-2,3],[1,6,29]]` - Mathematics

Advertisements
Advertisements

Question

Find xya and b if

`[[2x-3y,a-b,3],[1,x+4y,3a+4b]]`=`[[1,-2,3],[1,6,29]]`

Sum

Solution

\[\begin{bmatrix}2x - 3y & a - b & 3 \\ 1 & x + 4y & 3a + 4b\end{bmatrix} = \begin{bmatrix}1 & - 2 & 3 \\ 1 & 6 & 29\end{bmatrix}\]\[\Rightarrow 2x - 3y = 1 . . . \left( 1 \right) \]
\[x + 4y = 6 \]
\[ \Rightarrow x = 6 - 4y . . . \left( 2 \right)\]  
Putting the value of x in eq. (1), we get
\[2\left( 6 - 4y \right) - 3y = 1 \]
\[ \Rightarrow 12 - 8y - 3y = 1 \]
\[ \Rightarrow 12 - 11y = 1 \]
\[ \Rightarrow - 11y = - 11 \]
\[ \Rightarrow y = \frac{- 11}{- 11} = 1\]
\[\]
Putting the value of  y in eq. (2), we get
\[x = 6 - 4\left( 1 \right)\]
\[ \Rightarrow x = 6 - 4 \]
\[ \Rightarrow x = 2 \]  
\[Now, \]
\[a - b = - 2 \]
\[ \Rightarrow a = - 2 + b . . . \left( 3 \right) \]
\[3a + 4b = 29 . . . \left( 4 \right) \]
Putting the value of a in eq. (4), we get\[3\left( - 2 + b \right) + 4b = 29 \]
\[ \Rightarrow - 6 + 3b + 4b = 29 \]
\[ \Rightarrow - 6 + 7b = 29 \]
\[ \Rightarrow 7b = 29 + 6\]
\[ \Rightarrow 7b = 35 \]
\[ \Rightarrow b = \frac{35}{7} = 5 \]  
Putting the value of b in eq. (1), we get

\[a = - 2 + 5 \]
\[ \Rightarrow a = 3 \]
`∴a=3,b=5,x=2` and `y=1`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.1 | Q 9 | Page 7

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

if `2[[3,4],[5,x]]+[[1,y],[0,1]]=[[7,0],[10,5]]` , find (xy).


If `[[x-y,z],[2x-y,w]]=[[-1,4],[0,5]]` find the value of x+y.


If A= `[(cos alpha, -sin alpha), (sin alpha, cos alpha)]` then A + A' = I then the value of α is  ______.


Find xy and z so that A = B, where`A= [[x-2,3,2x],[18z,y+2,6x]],``b=[[y,z,6],[6y,x,2y]]`


`If [[x,3x- y],[2x+z,3y -w ]]=[[3,2],[4,7]]` find x,y,z,w


`If [[x-y,z],[2x-y,w]]=[[-1,4],[0,5]]`Find X,Y,Z,W.


`If [[x + 3 , z + 4 ,     2y-7 ],[4x + 6,a-1,0 ],[b-3,3b,z + 2c ]]= [[0,6,3y-2],[2x,-3,2c-2],[2b + 4,-21,0]]`Obtain the values of abcxy and z.

 


`If [[xy          4],[z+6     x+y ]]``=[[8     w],[0     6]]`, then find the values of X,Y,Z and W . 


Given an example of

a row matrix which is also a column matrix,


For what values of x and y are the following matrices equal?

`A=[[2x+1   2y],[0              y^2 - 5y]]``B=[[x + 3      y^2 +2],[0        -6]]`


For what values of a and b if A = B, where

`A = [[a + 4        3b],[8        -6]]   B = [[2a +2              b^2+2],[8                    b^2  - 5b]]`

Disclaimer: There is a misprint in the question, b2 − 5should be written instead of b2 − 56.


Find the value of x from the following: `[[2x - y          5],[ 3                         y ]]` = `[[6            5 ],[3         - 2\]]`


Find the value of y, if \[\begin{bmatrix}x - y & 2 \\ x & 5\end{bmatrix} = \begin{bmatrix}2 & 2 \\ 3 & 5\end{bmatrix}\]


If matrix A = [1 2 3], write AAT.


if  \[\begin{bmatrix}2x + y & 3y \\ 0 & 4\end{bmatrix} = \begin{bmatrix}6 & 0 \\ 6 & 4\end{bmatrix}\]  , then find x.


If \[A = \begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\] , find A + AT.


If \[\begin{bmatrix}a + b & 2 \\ 5 & b\end{bmatrix} = \begin{bmatrix}6 & 5 \\ 2 & 2\end{bmatrix}\] , then find a.


Which of the given values of x and y make the following pairs of matrices equal? \[\begin{bmatrix}3x + 7 & 5 \\ y + 1 & 2 - 3x\end{bmatrix}, \begin{bmatrix}0 & y - 2 \\ 8 & 4\end{bmatrix}\] 


If matrix  \[A = \left[ a_{ij} \right]_{2 \times 2}\] where 

\[a_{ij} = \begin{cases}1 & , if i \neq j \\ 0 & , if i = j\end{cases}\] 

 


If \[A = \frac{1}{\pi}\begin{bmatrix}\sin^{- 1} \left( \ pix \right) & \ tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & \cot^{- 1} \left( \ pix \right)\end{bmatrix}, B = \frac{1}{\pi}\begin{bmatrix}- \cos^{- 1} \left( \ pix \right) & \tan^{- 1} \left( \frac{x}{\pi} \right) \\ \sin^{- 1} \left( \frac{x}{\pi} \right) & - \tan^{- 1} \left( \ pix \right)\end{bmatrix}\]

A − B is equal to


If A = `[[3,1] , [7,5]]`, find the values of x and y such that A2 + xI2 = yA.


If A `= [(0,-1,2),(1,0,3),(-2,-3,0)],` then A + 2AT equals


On her birthday, Seema decided to donate some money to the children of an orphanage home. If there were 8 children less, everyone would have got Rs.10 more. However, if there were 16 children more, everyone would have got Rs. 10 less. Let the number of children be x and the amount distributed by Seema for one child be y(in Rs.)

Based on the information given above, answer the following questions:

  • How much amount is given to each child by Seema?

Choose the correct answer in the following questions

If A = `[(alpha, beta),(y, - a)]` is such that A2 = I, then


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×