Advertisements
Advertisements
Question
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
Solution
Given : [1 −1 x ] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=0`
⇒[0−2+x 1−1+x −1−3+x] `[[0],[1],[1]]= 0,`
⇒[−2+x x −4+x] `[[0],[1],[1]]= 0,`
⇒[0+x−4+x]=0
⇒2x−4=0
⇒2x=4
`⇒ x=4/2`
∴ x=2
APPEARS IN
RELATED QUESTIONS
Compute the indicated product.
`[(1),(2),(3)] [2,3,4]`
\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], then prove that A2 − A + 2I = O.
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
If f (x) = x2 − 2x, find f (A), where A=
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then show that `(A+B)^2=A^2+B^2`
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
Give examples of matrices
A and B such that AB = O but BA ≠ O.
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
If A and B are square matrices of the same order, explain, why in general
(A + B) (A − B) ≠ A2 − B2
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.
If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2, values of a and b are
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.
A square matrix where every element is unity is called an identity matrix.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money collected by all three schools DPS, CVC, and KVS?
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- How many articles (in total) are sold by three schools?
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3