Advertisements
Advertisements
Question
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
Solution
`A^2=A.A`
`⇒ A^2=[[1,1],[1,1]]` `[[1,1],[1,1]]`
`⇒ A^2=[[1+1,1+1],[1+1,1+1]]`
`⇒ A^2=[[2,2],[2,2]]`
Now
`A^2=A^2 A^2`
`⇒A^4=[[2,2],[2,2]]` `[[2,2],[2,2]]`
`⇒A^4=[[4+4,4+4],[4+4,4+4]]`
`⇒A^4=[[8,8],[8,8]]`
Also ,
`A^4=λ A`
`⇒ [[8,8],[8,8]]=λ[[1,1],[1,1]]`
`⇒ [[8,8],[8,8]]=[[λ,λ],[λ,λ]]`
`⇒ λ=8`
APPEARS IN
RELATED QUESTIONS
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If
If A=then find λ, μ so that A2 = λA + μI
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + X = 0.
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
Give examples of matrices
A and B such that AB = O but BA ≠ O.
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
If A and B are square matrices of the same order, explain, why in general
(A − B)2 ≠ A2 − 2AB + B2
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(AB)T = BT AT
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
If `[2 1 3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.
If \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals
If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- How many articles (in total) are sold by three schools?
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.