Advertisements
Advertisements
Question
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y
Solution
Given that X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`
2X – 3Y = `2[(3, 1, -1),(5, -2, -3)] - 3[(2, 1, -1),(7, 2, 4)]`
= `[(2 xx 3, 2 xx 1, -2 xx 1),(2 xx 5, -2 xx 2, -2 xx 3)] - [(3 xx 2, 1 xx 3, -1 xx 3),(3 xx7, 3 xx 2, 3 xx 4)]`
= `[(6, 2, -2),(10, -4, -6)] - [(6, 3, -3),(21, 6, 12)]`
= `[(6 - 6, 2 - 3, -2 + 3),(10 - 21, -4 - 6, -6 - 12)]`
= `[(0, -1, 1),(-11, -10, -18)]`
APPEARS IN
RELATED QUESTIONS
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + X = 0.
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?
What is the total number of 2 × 2 matrices with each entry 0 or 1?
For a 2 × 2 matrix A = [aij] whose elements are given by
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
If `[2 1 3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?