Advertisements
Advertisements
Question
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Solution
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
`=[(2(1)+3(0)+4(3), 2(-3)+3(2)+4(0), 2(5)+3(4)+4(5)), (3(1)+4(0)+5(3), 3(-3)+4(2)+5(0), 3(5)+4(4)+5(5)), (4(1)+5(0)+6(3), 4(-3)+5(2)+6(0), 4(5)+5(4)+6(5))]`
`=[(2+0+12, -6+6+0, 10+12+20), (3+0+15, -9+8+0, 15+16+25), (4+0+18, -12+10+0, 20+20+30)]`
`= [(14,0,42),(18, -1,56),(22,-2,70)]`
APPEARS IN
RELATED QUESTIONS
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], then prove that A2 − A + 2I = O.
If
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
If A and B are square matrices of the same order, explain, why in general
(A − B)2 ≠ A2 − 2AB + B2
If A and B are square matrices of the same order, explain, why in general
(A + B) (A − B) ≠ A2 − B2
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
For any square matrix write whether AAT is symmetric or skew-symmetric.
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
The number of possible matrices of order 3 × 3 with each entry 2 or 0 is
Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
A matrix which is not a square matrix is called a ______ matrix.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total money (in Rupees) collected by the school DPS?