English

If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,N],[0,1]]` for All Positive Integers N. - Mathematics

Advertisements
Advertisements

Question

If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.

Sum

Solution

We shall prove the result by the principle of mathematical induction on n.

Step 1: If n = 1, by definition of integral powers of matrix, we have

\[A^1 = \begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix} = A\]
\[\]
So, the result is true for = 1.
Step 2: Let the result be true for n = m. Then,
\[A^m = \begin{bmatrix}1 & m \\ 0 & 1\end{bmatrix}\] ... (1)
Now, we shall show that the result is true for
\[n = m + 1\]
Here,
\[A^{m + 1} = \begin{bmatrix}1 & m + 1 \\ 0 & 1\end{bmatrix}\] 
By definition of integral power of matrix, we have

\[A^{m + 1} = A^m A\]
 = \begin{bmatrix}1 & m \\ 0 & 1\end{bmatrix}\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}
 [From eq .(1)]
= \begin{bmatrix}1 + 0 & 1 + m \\ 0 + 0 & 0 + 1\end{bmatrix}
= \begin{bmatrix}1 & 1 + m \\ 0 & 1\end{bmatrix}

This shows that when the result is true for n = m, it is also true for n = + 1.

Hence, by the principle of mathematical induction, the result is valid for any positive integer n.
shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 56 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the indicated product.

`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`


Compute the indicated products

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


Compute the indicated product:

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Compute the products AB and BA whichever exists in each of the following cases:

 [ab]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`


If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


If


If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.


 If `[[2     3],[5      7]] [[1      -3],[-2       4]]-[[-4      6],[-9        x]]` find x.


If 

 


Solve the matrix equations:

`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`


If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ CA ≠ O.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000


To promote making of toilets for women, an organisation tried to generate awarness through (i) house calls, (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:

(i) ₹50       (ii) ₹20       (iii) ₹40

The number of attempts made in three villages XY and Z are given below:

          (i)               (ii)              (iii)
X      400              300             100
Y      300              250               75
Z      500              400             150

Find the total cost incurred by the organisation for three villages separately, using matrices.

 

In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]

The number of contacts of each type made in two cities X and Y is given in the matrix B as

\[\begin{array}"Telephone & House calls & Letters\end{array}\]

\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City   X \\ City Y\end{array}\]

Find the total amount spent by the party in the two cities.

What should one consider before casting his/her vote − party's promotional activity of their social activities?

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


If \[A = \begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\], satisfies the matrix equation A2 = kA, write the value of k.
 

If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


Write matrix A satisfying   ` A+[[2      3],[-1   4]] =[[3     6],[- 3     8]]`.


Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these

 


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.


If A and B are two square matrices of the same order, then AB = BA.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×