Advertisements
Advertisements
Question
If A = `[[2 -1],[3 2]]` and B = `[[0 4],[-1 7]]`find 3A2 − 2B + I
Solution
Given: A= `[[2 -1],[3 2]]`
Now,
`A^(2 )=A A`
`⇒ A^(2)=` `[[2 -1],[3 2]]` `[[2 -1],[3 2]]`
`⇒ A^(2)=[[4-3 - 2-2],[6+6 -3+4]]`
`⇒A^(2)=[[1 -4],[12 1]]`
`3A^(2)−2B+I`
`⇒3A^(2)−2B+I=3 [[1 -4],[12 1]]-2[[0 4],[-1 7]]+[[1 0],[0 1]]`
`⇒3A^(2)−2B+I=[[3 -12],[36 3]]-[[0 8],[-2 14]]+[[1 0],[0 1]]`
`⇒3A^(2)−2B+I=[[3-0+1 -12-8+0],[36+2+0 3-14+1]]`
`⇒3A^(2)−2B+I=[[4 -20],[38 -10]]`
APPEARS IN
RELATED QUESTIONS
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find AB
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.
If
If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0
If A=then find λ, μ so that A2 = λA + μI
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
To promote making of toilets for women, an organisation tried to generate awarness through (i) house calls, (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:
(i) ₹50 (ii) ₹20 (iii) ₹40
The number of attempts made in three villages X, Y and Z are given below:
(i) (ii) (iii)
X 400 300 100
Y 300 250 75
Z 500 400 150
Find the total cost incurred by the organisation for three villages separately, using matrices.
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
A square matrix where every element is unity is called an identity matrix.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.