मराठी

If Ab = A And Ba = B, Where A And B Are Square Matrices, Then B2 = B And A2 = A - Mathematics

Advertisements
Advertisements

प्रश्न

If AB = A and BA = B, where A and B are square matrices,  then

पर्याय

  • B2 = B and A2 = A

  • B2B and A2 = A

  • A2 A , B2 =B

  • A2 A , B2 ≠ B

MCQ

उत्तर

B2 = B and A2 = 

\[Here, \] 

\[AB = A . . . \left( 1 \right) \] 
\[BA = B . . . \left( 2 \right)\] 
\[ \Rightarrow ABA = AA \left[ \text{Multiplying both sides by }A \right] \] 
\[BAB = BB \left[ \text{Multiplying both sides by }A \right] \] 

\[ \Rightarrow AB = A^2 \left[ \text{From eq} . \left( 2 \right) \right] \] 
\[BA = B^2 \left[ \text{From eq }. \left( 1 \right) \right]\] 
\[ \Rightarrow A = A^2 \left[\text{ From eq} . \left( 1 \right) \right] \] 
\[B = B^2 \left[ \text{From eq} . \left( 2 \right) \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.7 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.7 | Q 4 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Compute the indicated products

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Compute the indicated product.

`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`


Evaluate the following:

`[[],[1  2  3],[]]` `[[1     0      2],[2       0         1],[0          1       2]]` `[[2],[4],[6]]`


Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):

`A =-[[1             2         0],[-1        0           1]]`,`B=[[1       0],[-1        2],[0        3]]` and C= `[[1],[-1]]`


 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


If A=then find λ, μ so that A2 = λA + μI

 

`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0


Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`


`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 

If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


Give examples of matrices

A and B such that AB = O but BA ≠ O.


If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


For the matrices A and B, verify that (AB)T = BT AT, where
\[A = \begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}1 & 4 \\ 2 & 5\end{bmatrix}\]

If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.


If  \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.


What is the total number of 2 × 2 matrices with each entry 0 or 1?


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to


If  \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.


Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


If A and B are square matrices of the same order, then (AB)′ = ______.


A square matrix where every element is unity is called an identity matrix.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money (in Rs.) collected by schools CVC and KVS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×