Advertisements
Advertisements
प्रश्न
If A and B are two square matrices of the same order, then AB = BA.
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
For two square matrices A and B, AB = BA is not always true
APPEARS IN
संबंधित प्रश्न
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A =-[[1 2 0],[-1 0 1]]`,`B=[[1 0],[-1 2],[0 3]]` and C= `[[1],[-1]]`
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
Give examples of matrices
A and B such that AB = O but BA ≠ O.
If A and B are square matrices of the same order, explain, why in general
(A + B) (A − B) ≠ A2 − B2
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
For a 2 × 2 matrix A = [aij] whose elements are given by
Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these
If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is
Disclaimer: option (a) and (d) both are the same.
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be ______.