मराठी

If a = [ 2 4 − 1 − 1 0 2 ] , B = ⎡ ⎢ ⎣ 3 4 − 1 2 2 1 ⎤ ⎥ ⎦ ,Find ( a B ) T - Mathematics

Advertisements
Advertisements

प्रश्न

 If \[A = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}, B = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\],find `(AB)^T`

 

बेरीज

उत्तर

\[Here, \] 

\[AB = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}\begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\] 

\[ \Rightarrow AB = \begin{bmatrix}6 - 4 - 2 & 8 + 8 - 1 \\ - 3 - 0 + 4 & - 4 + 0 + 2\end{bmatrix}\] 

\[ \Rightarrow AB = \begin{bmatrix}0 & 15 \\ 1 & - 2\end{bmatrix}\] 

\[ \Rightarrow \left( AB \right)^T = \begin{bmatrix}0 & 1 \\ 15 & - 2\end{bmatrix}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.4 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.4 | Q 5 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Compute the indicated product:

`[(a,b),(-b,a)][(a,-b),(b,a)]`


Compute the indicated products:

`[[a    b],[-b      a]][[a     -b],[b         a]]`


Show that AB ≠ BA in each of the following cases:

`A=[[1       3         0],[1        1          0],[4         1         0]]`And    B=`[[0      1          0],[1        0        0],[0           5          1]]`


\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


If 

 


If A=, find k such that A2 = kA − 2I2

 

Find the value of x for which the matrix product`[[2       0           7],[0          1            0],[1       -2       1]]` `[[-x         14x          7x],[0         1            0],[x           -4x             -2x]]`equal an identity matrix.


Solve the matrix equations:

`[x1][[1,0],[-2,-3]][[x],[5]]=0`


Solve the matrix equations:

[2x 3] `[[1       2],[-3      0]] , [[x],[8]]=0`


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0


Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`


`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

For the matrices A and B, verify that (AB)T = BT AT, where
\[A = \begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}1 & 4 \\ 2 & 5\end{bmatrix}\]

 If \[A = \begin{bmatrix}\sin \alpha & \cos \alpha \\ - \cos \alpha & \sin \alpha\end{bmatrix}\] , verify that AT A = I2.
 

If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.

 

Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


What is the total number of 2 × 2 matrices with each entry 0 or 1?


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]

 


Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.


If `[2     1       3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.


If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\] 


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


If  \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


If A and B are two square matrices of the same order, then AB = BA.


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×