English

If Li, Mi, Ni, I = 1, 2, 3 Denote the Direction Cosines of Three Mutually Perpendicular Vectors in Space, Prove that Aat = I, Where - Mathematics

Advertisements
Advertisements

Question

If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]

Sum

Solution

Given : \[\left( l_1 , m_1 , n_1 \right), \left( l_2 , m_2 , n_2 \right), \left( l_3 , m_3 , n_3 \right)\]are the direction cosines of three mutually perpendicular vectors in space.

\[\left. \begin{array}l_1^2 + m_1^2 + n_1^2 = 1 \\ l_2^2 + m_2^2 + n_2^2 = 1 \\ l_3^2 + m_3^2 + n_3^2 = 1\end{array} \right\} . . . . . \left( i \right)\]
\[\left. \begin{array}l_1 l_2 + m_1 m_2 + n_1 n_2 = 0 \\ l_2 l_3 + m_2 m_3 + n_2 n_3 = 0 \\ l_3 l_1 + m_3 m_1 + n_3 n_1 = 0\end{array} \right\} . . . . . \left( ii \right)\]

Let \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]

\[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]

\[A A^T = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\begin{bmatrix}l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \\ n_1 & n_2 & n_3\end{bmatrix}\]
\[ \Rightarrow A A^T = \begin{bmatrix}{l_1}^2 + {m_1}^2 + {n_1}^2 & l_1 l_2 + m_1 m_2 + n_1 n_2 & l_3 l_1 + m_3 m_1 + n_3 n_1 \\ l_1 l_2 + m_1 m_2 + n_1 n_2 & {l_2}^2 + {m_2}^2 + {n_2}^2 & l_2 l_3 + m_2 m_3 + n_2 n_3 \\ l_3 l_1 + m_3 m_1 + n_3 n_1 & l_2 l_3 + m_2 m_3 + n_2 n_3 & {l_3}^2 + {m_3}^2 + {n_3}^2\end{bmatrix}\]
\[\]

From (i) and (ii), we get

\[A A^T = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = I\]

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.4 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.4 | Q 10 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the value of x, y, and z from the following equation:

`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`


`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.


Determine the product `[(-4,4,4),(-7,1,3),(5,-3,-1)][(1,-1,1),(1,-2,-2),(2,1,3)]` and use it to solve the system of equations x - y + z = 4, x- 2y- 2z = 9, 2x + y + 3z = 1.


Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3


Given two matrices A and B 

`A = [(1,-2,3),(1,4,1),(1,-3, 2)]  and B  = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`

find AB and use this result to solve the following system of equations:

x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1


If ЁЭТЩ = r cos θ and y= r sin θ prove that JJ-1=1.


Choose the correct alternative.

The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(5),(4),(-3)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`


Identify the following matrix is singular or non-singular?

`[(3, 5, 7),(-2, 1, 4),(3, 2, 5)]`


Find k if the following matrix is singular:

`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.


Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix 


Answer the following question:

If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.


Choose the correct alternative:

If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______


If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


If two matrices A and B are of the same order, then 2A + B = B + 2A.


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`


If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.


If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.


If A is a square matrix, then A – A’ is a ____________.


If A `= [("cos x", - "sin x"),("sin x", "cos x")]`, find AAT.


The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.


The matrix A `=[(0,1),(1,0)]` is a ____________.


If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.


`root(3)(4663) + 349` = ? ÷ 21.003


A diagonal matrix is said to be a scalar matrix if its diagonal elements are


Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0


Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:

(P) If A1I2, then |A| = –1

(Q) If |A| = 1, then tr(A) = 2,

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.


Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.


If `[(1, 2, 1),(2, 3, 1),(3, a, 1)]` is non-singular matrix and a ∈ A, then the set A is ______.


Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100

Reason: AB = BA implies AB = BA for all positive integers n.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×