Advertisements
Advertisements
Question
Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.
Solution
Let A = `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]`
∴ A' = `[(0, y, 3/2),(-5"i", 0, -sqrt(2)),(x, z, 0)]`
∴ –A' = `-[(0, y, 3/2),(-5"i", 0, -sqrt(2)),(x, z, 0)]`
= `[(0, -y, -3/2),(5"i", 0, sqrt(2)),(-x, -z, 0)]`
Since A is a skew-symmetric matrix, A = – A'
∴ `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)] = [(0, -y, -3/2),(5"i", 0, sqrt(2)),(-x, -z, 0)]`
∴ by equality of matrices, we get,
x = `-3/2, y = 5"i" and z = sqrt(2)`
APPEARS IN
RELATED QUESTIONS
If for any 2 x 2 square matrix A, `A("adj" "A") = [(8,0), (0,8)]`, then write the value of |A|
Find the value of x, y, and z from the following equation:
`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`
Find the matrix X so that X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`
If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.
Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3
Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`
If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.
A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?
Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.
Choose the correct alternative.
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`
Identify the following matrix is singular or non-singular?
`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix
Select the correct option from the given alternatives:
If A and B are square matrices of equal order, then which one is correct among the following?
State whether the following statement is True or False:
If A is non singular, then |A| = 0
State whether the following statement is True or False:
If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2
If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2
For the non singular matrix A, (A′)–1 = (A–1)′.
If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.
If A is a square matrix, then A – A’ is a ____________.
If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.
If a matrix A is both symmetric and skew-symmetric, then ____________.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
If a matrix A is both symmetric and skew symmetric then matrix A is ____________.
`root(3)(4663) + 349` = ? ÷ 21.003
A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
If A = `[(0, -tan θ/2),(tan θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______.
If `A = [(1,-1,2),(0,-1,3)], B = [(-2,1),(3,-1),(0,2)],` then AB is a singular matrix.
If A is a square matrix of order 3, then |2A| is equal to ______.
A matrix which is both symmetric and skew symmetric matrix is a ______.